Asymmetric Aldol Reactions Using Boron Enolates

Cameron J. Cowden, University Chemical Laboratory, Cambridge, England Ian Paterson, University Chemical Laboratory, Cambridge, England

1. Introduction

The directed aldol reaction allows the construction of new carbon–carbon bonds in a regio-, diastereo-, and enantioselective manner. The kinetically controlled, boron-mediated aldol reaction is particularly powerful for the efficient synthesis of β -hydroxy carbonyl compounds. Compared to other metal enolates, the boron–oxygen bond in boron enolates is relatively short which, on addition to aldehydes, leads to tight cyclic transition states and highly stereoselective carbon–carbon bond formation. Moreover, variation of the steric demands of the ligands on boron allows discrimination between competing transition states. Chiral auxiliaries attached to the boron enolate are frequently employed to control the relative and absolute stereochemistry of the aldol products. Asymmetric reactions using chiral ligands on boron are also possible and these produce useful enantiomerically enriched adducts. The utility of boron-mediated aldol reactions has been demonstrated in numerous total syntheses of complex polyoxygenated natural products, and several of these are highlighted in the Application to Synthesis section of this chapter.

Several reviews of the directed aldol reaction are available, (1-8) including the *Organic Reactions* chapter by Mukaiyama in 1981. (9) The material covered in this review concerns only the asymmetric formation of β -hydroxy carbonyl compounds using boron enolates and surveys the literature from 1981 until the end of 1995. (10)

2. Mechanism and Stereochemistry

In the boron-mediated aldol reaction, enolization of a carbonyl compound with a Lewis acidic boron reagent (L_2BX ; X = OTf, CI, Br) generates a boron enolate **1**, which combines with an aldehyde to form a reactive ate-complex **2** (Eq. 1). This complexation then facilitates bond reorganization via a six-membered cyclic transition state, thus affording the boron aldolate **3** which, upon hydrolytic workup, gives the aldol product **4**.

A stereorandom aldol reaction between a carbonyl compound (R^{2} ¹ H) and an aldehyde (R^{3} ¹ H) creates a new carbon–carbon bond and two stereocenters and gives rise to four possible products: a pair of syn stereoisomers (5 and 6) and a pair of anti stereoisomers (7 and 8) (Eq. 2). If the R^{1} , R^{2} , and R^{3} groups do not

contain any further stereocenters, then compounds **5** and **6** will be enantiomers, as will compounds **7** and **8**. The selective formation of any one of these four stereoisomers constitutes an asymmetric process. In such an aldol reaction there will be two stereochemical issues operating: relative and absolute stereocontrol.

2.1. Relative Stereocontrol Arising from Enolization Selectivity

Most boron-mediated aldol reactions are considered to proceed through a chair-like transition state, where (*Z*)-boron enolates^{*} give syn aldol products (Eq. 3) and (*E*)-boron enolates^{*} afford anti aldol products (Eq. 4). (10a,b) The controlling influence

in these reactions is the avoidance of severe 1,3-diaxial interactions in the cyclic transition states (TS 1 vs. TS 2 and TS 3 vs. TS 4). It is also unlikely that transition states such as TS 2 and TS 4 would be accessible because this requires the formation of an unfavorable cis geometry about the ate-complex 2.

As the boron enolate geometry is faithfully translated into aldol product stereochemistry, enolization selectivity is crucially important. In the case of direct boron enolate formation, it is usually possible to selectively prepare either (*E*)- or (*Z*)-boron enolates by enolization of simple ethyl ketones ($R^2 = Me$). (10-13) A combination of small ligands on boron (e.g., *n*-butyl), a good leaving group (e.g., triflate), and a bulky amine base (e.g., diisopropylethylamine) usually leads to (*Z*)-selective enolization (Eq. 5). On the other hand, use of sterically demanding

ligands on boron (e.g., cyclohexyl), a poor leaving group (e.g., chloride), and a small amine base (e.g., triethylamine) usually promotes (*E*)-enolate formation (Eq. 6). (11,12,14-17) Two explanations have been proposed for this enolization behavior. (18,19)

2.2. Absolute Stereocontrol Arising from p -Facial Selectivity

In an aldol reaction, absolute stereocontrol is the selective production of either syn aldol products **5** or **6** and, similarly, the production of either anti products **7** or **8**. Control of the absolute stereochemistry requires facial discrimination of either the boron enolate or aldehyde π -systems. This π -facial discrimination can be achieved by one or more of the following methods:

- 1. The use of chiral aldehydes where R³ is a stereogenic group
- 2. The use of auxiliary control from the enolate where R¹ is a stereogenic group and is subsequently removed
- 3. The use of substrate control from a chiral enolate where R¹ is a stereogenic group but is retained in subsequent steps
- 4. Reagent control by the use of chiral boron reagents

A more detailed discussion of these individual effects and their combined influence is outlined in the following section.

3. Scope and Limitations

3.1. Asymmetric Induction from Chiral Aldehydes

Reactions of achiral enolates with chiral aldehydes represents the simplest method of asymmetric aldol synthesis. Control of the boron enolate geometry generally determines the syn versus anti diastereoselectivity; it therefore follows that if a good level of facial selectivity can be imparted by a chiral aldehyde, a useful asymmetric aldol reaction will be possible. The selectivity induced by a chiral aldehyde can fluctuate, and changing either the ligands on boron, (20) the solvent used, (21) or the protecting group on a β -oxygenated stereocenter (20) can have a significant effect. When these variables are optimized, a synthetically useful reaction can result. For example, reaction of boron enolate **9** with aldehyde **10** proceeds in high yield to afford a single observed syn aldol adduct (Eq. 7). (22) Interestingly, the aldol reaction of aldehyde **11** was initially performed using a chiral auxiliary, but it was subsequently found that the facial bias of the aldehyde was enough to use the achiral enolate **12** (Eq. 8). (23)

3.1.1. α -Chiral Aldehydes and Influence of Enolate Geometry

Aldol reactions of achiral boron enolates and α -substituted chiral aldehydes are the most thoroughly studied systems. The Felkin–Anh model for nucleophilic attack on α -chiral aldehydes predicts the product stereochemistry indicated in Eq. 9, where R_L is either the largest group or the group with the lowest lying σ * orbital. (24,25)

When a reaction takes place through an acyclic transition state, the Felkin–Anh model generally holds. However, boron-mediated aldol reactions usually proceed through a highly ordered cyclic transition state where other factors have an influence on the selectivity. Thus, while (*E*)-boron enolates usually favor formation of the Felkin adduct, as in Eq. 10, (21, 26) (*Z*)-boron enolates normally lead to anti-Felkin products, as in Eq. 11. (27)

This anomalous behavior of (*Z*)-boron enolates has been attributed to a destabilizing syn-pentane steric interaction in the cyclic chair transition state **TS 5** leading to the Felkin product (Fig. 1). (28, 29) This interaction is avoided in the diastereomeric transition state **TS 6** leading to a preference for anti-Felkin attack. For (*E*)-boron enolates, the aldol addition favors the

Felkin-type **TS 7** over **TS 8**. **Fig.1**.

Transition State Model for (Z)-Enolates with α -Chiral Aldehydes

Transition State Model for (E)-Enolates with α -Chiral Aldehydes

There are exceptions to this generalization; for example, an α -heteroatom may provide an especially strong facial bias leading to Felkin-type selectivity (Eq. 12). (30)

Few examples of boron-mediated aldol reactions of methyl ketones or thioesters with α -chiral aldehydes which do not possess a β -stereocenter have been reported. (31) It would appear, however, that the asymmetric induction from an α -methyl group alone is negligible (Eq. 13). (32)

3.1.2. Stereochemical Trends for β -Alkoxy Aldehydes

The boron-mediated aldol reactions of ketones with chiral aldehydes having a β -alkoxy substituent have been studied in detail. (20, 33-39) In the majority of cases, the aldehyde also possesses an α stereocenter which complicates the analysis. For dialkyl boron reagents, a chelation-controlled reaction is not possible, but the β -alkoxy stereocenter has steric and electronic contributions. There are many variables in these reactions, including the β -oxygen protecting group, the choice of ligands on boron and, of course, the structure of the enolate concerned.

The β -alkoxy stereocenter of an aldehyde may exert an electronic or opposed dipoles effect resulting in the production of a 1,3-anti diol relationship. (37, 39) Such an effect is strongest for reactions that proceed through an open transition state, such as the Mukaiyama aldol reaction. In the examples of Eqs. 14 and 15, the selectivity

of the aldol reaction deteriorates when the aldehyde β -stereocenter is inverted, indicating some contribution to the reaction. (38) The bias of the aldehyde is still dominated by the α -chiral methyl group however, showing that the effect of the β -stereocenter is only moderate.

The analogous methyl ketone aldol reaction of α -methyl- β -alkoxy aldehydes has been extensively studied. (20, 34, 35, 38-40) As already indicated (Eq. 13), boron-mediated aldol reactions of methyl ketones are not greatly influenced by the α -chiral methyl group of an aldehyde, and from the results reported to date, the β -stereocenter can play a significant role. For example, the 1,3-anti product is obtained independent of the configuration of the α -methyl group of the aldehyde (Eqs. 16 and 17). (39)

In contrast, the reaction of boron enolate **29** with aldehydes **30** and **31** leads to a small preference for the 1,3-syn product (Eqs. 18 and 19). (34)

In the previous examples, the choice of β -alkoxy protecting group controls the selectivity of the reaction. This effect has also been observed in more complicated systems. The exchange of a methoxymethyl ether protecting group for a silyl group caused the reaction depicted in Eq. 20 to show a strong preference for anti-Felkin attack leading to a 1,3-syn diol arrangement. (20)

The selectivity of these reactions may be due to a steric interaction of the β -alkoxy protecting group in the chair transition state, causing the reactions to proceed through a boat transition state. (20) A contributing factor could also be the simple alteration in conformational bias of the aldehyde as the β -alkoxy protecting group is changed. It should be noted that the same trends do not appear to be followed for α -unsubstituted chiral aldehydes, where limited induction is observed (Eq. 21). (37)

A more pronounced example of 1,3-induction is observed for α -methylene- β -oxygenated aldehydes, where the selectivity is dependent upon the structure of the boron enolate. (33) Methyl ketones add to these aldehydes in a 1,3-syn manner, especially when the protecting group on the β -oxygen substituent is large, as in aldehyde **40** (Eq. 22). In contrast, syn aldol reactions of ethyl ketones with this

aldehyde show high selectivity for the formation of 1,3-anti diols, as shown in Eq. 23. (33)

In summary, the level of induction imparted by a chiral aldehyde with a boron enolate is usually moderate, and control from a chiral enolate becomes necessary to achieve more synthetically useful levels of selectivity. Still, the contribution from the aldehyde is important for double stereodifferentiation because it can make the difference between a matched aldol reaction and a potentially unsuccessful, mismatched reaction. (8)

3.2. Auxiliary-Mediated Aldol Reactions

3.2.1. Heterocycle Auxiliaries

Boron aldol reactions mediated by a covalently attached chiral auxiliary are powerful tools for acyclic stereocontrol. The most widely used chiral auxiliaries are those based on oxazolidinone heterocycles. There are many variations on this theme, but the most popular are the Evans auxiliaries. (41, 42) The (*Z*)-boron enolate is prepared in the usual manner by enolization of the parent imide **45** with a boron triflate reagent in conjunction with a hindered tertiary amine base (commonly diisopropylethylamine) in dichloromethane (Eq. 24). This method normally gives exclusive formation of the (*Z*)-enol borinate **46**, which leads to syn aldol products of the type **47** with diastereoselectivities of up to 500:1. (27, 43)

The observed selectivity is accounted for by coordination of the aldehyde to the boron enolate **46** followed by transition state **TS 9** where the dipoles of the enolate oxygen and the carbonyl group of the auxiliary are opposed. (44) Some examples of this reaction for achiral aldehydes are given (Eqs. 25, (41) 26, (45, 46) and 27 (47)).

The facial bias of these enolates overrides any inherent π -facial selectivity of chiral aldehydes in all but a few cases. For example, the boron-mediated aldol reaction of aldehyde **48** with either boron enolate **46** or its enantiomer **ent-46** leads to auxiliary control of the newly generated stereocenters (Eqs. 28 and 29). (48-50)

A wide variety of alkylated imides have been successfully used in the boron-mediated aldol reaction of oxazolidinone auxiliaries. By far the most common is the propionimide which acts as a propionate building block for polyketide systems. The crotyl imides are also popular (e.g., Eq. 30), and the products of these reactions have been used in approaches to several natural products. (23,51–54)

In contrast, the parent *N*-acetyl imide is unselective in its aldol reactions, giving approximately equal amounts of the two aldol diastereomers **49** and **50** (Eq. 31). (41, 44) This result may be attributed to competition of boat transition states. (55)

The lack of selectivity for unsubstituted enolates can be overcome, usually by

the temporary incorporation of a heteroatom substituent. (41) For example, a thioalkyl group can be reductively removed after the aldol reaction; this tactic has been employed in a synthetic approach to rhizoxin (Eq. 32). (56)

Another example of this protocol is the incorporation of a halogen atom, which was used in a synthesis of the immunosuppressant FK-506. (57) The aldol products from such reactions are also interesting building blocks for other purposes. For example, synthesis of amino acids via an azide displacement step (Eq. 33) (58) and the synthesis of epoxides have also been reported from both chlorides and bromides (Eq. 34). (59, 60) It should be noted that enolization of these systems apparently provides ~25% (*E*)-enolate, which does not interfere with the aldol reaction because it reacts more slowly than the corresponding (Z)-enolate. (58)

The use of α -oxygenated *N*-acetyl imides has also been well studied. The (*Z*)-enolate **51** from the *p*-methoxybenzyloxy substituted imide reacts with

typical behavior, producing aldol product **52** in high yield and selectivity (Eq. 35). (57) This

same conversion is not possible when protecting groups sensitive to the Lewis acidic enolization conditions are used; triethylsilyl, *tert*-butyldimethylsilyl, and 3,4-dimethoxybenzyl groups are all removed under the enolization conditions. Such protecting groups on the aldehyde segment pose no such problem in boron-mediated aldol reactions. Moreover, careful attention to the quality and quantity of reagents employed ensures that most common protecting groups can be tolerated in the enolate component.

A notable exception to the impressive syn-selectivity of these auxiliaries is the reaction of dibutylboron enolate **53** with aldehyde **54** which affords the anti adduct **55** as the exclusive product (Eq. 36). (61) This result is unusual and may be explained by the strong Felkin bias of the aldehyde.

One area where the auxiliary-controlled aldol reaction has been underutilized is in the production of enantiomerically pure products from racemic aldehydes. (57,62–65) The kinetic resolution reaction of the boron enolate 56 with two equivalents of racemic aldehyde 57 gives the major syn aldol adduct 58 from a matched case (Eq. 37). (65) Here, the minor product is the anti aldol adduct 59

obtained from the mismatched reaction, which may result from an acyclic transition state.

Another example (Eq. 38) is the aldol reaction of boron enolate **46** with the racemic aldehyde **60**. (63) Both enantiomers of the aldehyde react with similar rates

to give an equimolar mixture of syn aldol products **61** and **62**. These compounds were separated and used in an approach toward the synthesis of the macrolide antibiotic erythromycin, where this single aldol reaction provides five of the ten stereocenters required in erythronolide A (C_9 will be oxidized).

One of the advantages of these oxazolidinone auxiliaries is that they may be elaborated in many ways. Nondestructive hydrolysis of the imides is possible, (66) usually using lithium hydroperoxide. (67) Transamination to the synthetically versatile Weinreb amide is also a common transformation, (68) as is the reductive removal of the auxiliary. (51, 69-71) This latter approach may be followed by a deoxygenation step, which allows the syn aldol reaction to be

used as an apparent anti aldol reaction, and this protocol has been used in several polypropionate natural product syntheses (53, 72) including rapamycin (Scheme 1). (73)

Scheme 1.

Deoxygenation of the aldol products themselves allows access to 1,3-dimethylated systems, and such an approach, with two sequential iterations, has been used in the synthesis of the marine natural product doliculide (Scheme 2). (74, 75) Scheme 2.

While the heterocyclic auxiliaries introduced by Evans are by far the most widely used, many variations have been reported. A selection of those imides, **63–70**, which have been utilized in boron-mediated aldol additions, is shown in Fig. 2. Fig.2.

All of these auxiliaries function along similar lines, producing the same major product based on the Evans aldol transition state model (see **TS 9**). Each of the auxiliaries acts as a molecular scaffold with a carbonyl group acting as a strong dipole and a large and small group supplying facial selectivity (Eq. 39).

Only a few of these second-generation auxiliaries offer advantages over the original design. For example, the cysteine-derived auxiliary 63 confers excellent

selectivities in syn aldol reactions (76, 86) and has found use in natural product synthesis. (87-89) Aminolysis (86, 90) and direct reduction to an aldehyde is possible, (87, 89) but a nonoxidative aldol workup is necessary because competitive oxidation of sulfur is problematic. (76) The "quat" chiral auxiliary 64 offers the advantage of improved exocyclic selectivity in its hydrolytic removal. (77) The bifunctional, C_2 -symmetric reagent 71 undergoes simultaneous two-directional chain extension to give bis-adduct 72, thus facilitating atom economy (Eq. 40). (81, 82)

Several of these second-generation auxiliaries contribute useful levels of facial bias to unsubstituted enolates. (91, 92) The best of these would appear to be thioimide **73**, which gives good control in the methyl series as shown in Eq. 41. (93, 94) The absolute

configuration of the hydroxy stereocenter in these reactions is opposite to that predicted from the typical chair model, suggesting that a boat-like transition state is now dominant.

The Oppolzer sultams 74 and 75 have also been used in boron-mediated aldol reactions, providing selectivities which compete with the oxazolidinone auxiliaries. (95-98) One experimental difference with these auxiliaries is that the reaction of the sultams proceeds better when using in situ generated diethylboron triflate as opposed to dibutylboron triflate. Again, enolization selectively gives the (Z)-boron enolate 76 and this, in turn, reacts to afford the syn aldol product 77 via a

transition state that relies on preorganization due to opposed dipoles. (98-100) Removal of these auxiliaries by hydrolysis is common, and "transesterification" with allyl alcohol in the presence of $Ti(OEt)_4$ is possible. (101)

The foregoing auxiliaries offer excellent levels of asymmetric induction in syn aldol reactions via the preferential formation of (*Z*)-boron enolates. Note that the analogous (*E*)-enolates should afford anti aldol adducts. However, owing to the steric bulk of the auxiliaries, (*E*)-enolates cannot be formed preferentially on enolization. The generation of anti aldol products is possible by diverting the (*Z*)-boron enolate from a cyclic transition state. This is usually accomplished by pre-complexation of the aldehyde with a Lewis acid such as Et₂AlCl, thereby leading to an open transition state. (102, 103) When a bulky Lewis acid is used, these aldol reactions favor a single anti aldol product with the minor isomer, usually a syn diastereomer (Eq. 43). A transition-state model **TS 10** which explains the formation of the anti aldol products is shown (Eq. 44). (103)

The reaction can also be adapted to provide the "non-Evans" syn aldol adduct as the major product by using nonsterically demanding Lewis acids such as $TiCl_4$ (Eq. 45). (103) It should be noted that the premixing of sensitive aldehydes with Lewis acids may lead to side reactions.

In certain cases, excess dibutylboron triflate can act as a Lewis acid, thus diverting the usual syn-selective reaction to an anti aldol reaction. (102, 104) A loss in selectivity when using an excess of dibutylboron triflate is indicative of this competing reaction pathway. Note that when triethylamine is used rather than diisopropylethylamine, this effect should be less important since triethylamine coordinates more strongly to dibutylboron triflate, thus minimizing any erosion of stereocontrol. (10, 102)

With the successful generation of anti aldol products, one area that still requires study is the asymmetric synthesis of quaternary centers. (105) The reaction of tetra-substituted enolates of typical oxazolidinones proceeds poorly, (106) but the use of the related ephedrine-derived imidazolidinone **82** is reported to be successful, as shown in Eq. 46. (345) It remains to be seen whether this can be extended to the asymmetric synthesis of quaternary stereocenters.

Another method of establishing quaternary stereocenters involves the aldol reaction of a boron enolate with an unsymmetrical ketone. However, boron enolates are usually unreactive to ketones, and other metal enolates such as tin(II) would be better suited to this transformation. (5) The only successful examples of such an asymmetric, boron-mediated reaction are with highly electrophilic ketones such as hexafluoroacetone (e.g., Eq. 47), which probably proceed through an open transition state. (107)

3.2.2. α -Oxygenated Ketone Auxiliaries

Chiral auxiliaries unrelated to heterocyclic imides and sultams are also known. The most common of these are the α -oxygenated ketones **83**, (108) **84**, (109) **85**, (110) and **86**, (110) although the α -silyl ketone **87** (111) is also known (Fig. 3). While these are simple chiral ketones, the aldol products are manipulated in such a way that they are best considered as chiral auxiliaries. **Fig.3**.

The ethyl ketone **83** and its enantiomer are derived from (*S*)- and (*R*)-mandelic acid respectively. (108) The derived enolates of these ketones undergo highly selective syn aldol reactions using sterically demanding ligands on boron. The major aldol products are desilylated and then oxidatively cleaved to reveal the enantiomerically pure carboxylic acids. The reaction of enolate **88** even proceeds with formaldehyde to generate adduct **89**; (112) related reactions have been used in several synthetic efforts (113-115) including the synthesis of 6-deoxyerythronolide B (Scheme 3). (116) **Scheme 3**.

An analogous system employs the auxiliary **84**, which is likely to be of limited synthetic utility because it is obtained from the expensive (L)-*tert*-butylglycine. (109) The derived boron enolate **90** reacts with the same sense of induction as enolate **88**, again giving syn aldol products with useful levels of diastereoselectivity, as indicated in Eq. 48.

The third of these auxiliaries is the lactate-derived ketone **85** (Fig. 3); its (*Z*)-boron enolate **91** also undergoes selective syn aldol reactions (Scheme 4). (110, 117) The aldol products, such as **92**, can be manipulated via an oxidative cleavage step to reveal synthetically useful compounds. This process has been extended to the in situ addition of carbon nucleophiles to the aldolate intermediate **93** to give a stereochemically defined diol product **94**. (117) Ethyl ketones, for example, compound **95**, can also be prepared using samarium diiodide (Sml₂) to remove the α -benzyloxy group of ketone **92**. Potentially, this can be used as an "auxiliary-free"

system with the methyl group of the products retained (cf. the cyclohexyl or *tert*-butyl groups of the previous auxiliaries). Another advantage is that both enantiomers are easily obtained from the inexpensive (*S*)-ethyl and (*R*)-isobutyl lactate esters. **Scheme 4.**

The three previously described auxiliaries lead to the same sense of asymmetric induction, as indicated in Eq. 49. In each case, the (Z)-enolate reacts via chair

transition state **TS 11** with the bulky alkyl group positioned to avoid steric congestion and the alkoxy group aligned so as to oppose the dipole associated with the enolate oxygen. The moderate loss of selectivity when changing from the cyclohexyl or *tert*-butyl groups to the α -methyl group of compound **85** is noteworthy.

An alternative to the previously mentioned α -oxygenated auxiliaries is the α -silyl ketone **87**, whose synthesis depends upon the use of a RAMP or SAMP auxiliary. (111) The (*Z*)-boron enolate **96** shows high levels of asymmetric induction in aldol reactions, again giving syn aldol adducts (Eq. 50). The diastereoselectivity

of the reaction matches the (Z):(E) selectivity of the enolization, so further improvement to the enolization selectivity would be profitable. The aldol products, such as ketone 97, can be desilylated with tetrafluoroboric acid to give the corresponding ethyl ketones, a transformation analogous to the α -deoxygenation of aldol adduct 92, Scheme 4.

The foregoing examples again show how syn aldol products of defined absolute configuration can be successfully constructed using auxiliary control. However, the synthesis of anti aldol products without using strong Lewis acids to divert reactions away from cyclic transition states is desirable. One solution to this problem is the benzoate-protected, lactate-derived ketone **86**. (110) The (*E*)-enolate **98** adds to aldehydes with almost complete π -face selectivity to give anti adducts, where the minor product (<2%) is a syn aldol isomer (Eq. 51). (110, 118)

The anti selectivities from this reaction depend on formation of the (*E*)-boron enolate **98** by enolization of ketone **86** with the bulky dicyclohexylboron chloride reagent in conjunction with a small amine base (typically dimethylethylamine). Note that the conditions for the formation of this (*E*)-enolate (Eq. 53) are almost identical to the conditions for the formation of the (*Z*)-enolate **91** of the benzyl protected ketone **85** (Eq. 52). The benzyl protecting group of the $\alpha \alpha xygen$ in compound **85** allows chelation of the boron reagent before deprotonation, leading to the formation of a (*Z*)-enolate **91**. In contrast, the benzoate-protected system **86** does not facilitate chelation, and the (*E*)-enolate **98** is formed.

Reagent control is possible in this anti aldol reaction, as demonstrated by the reaction of each enantiomer of the ketone with the same α -chiral aldehyde **99** (Eqs. 54 and 55). (110) Here, the enolate facial selectivity dominates that of the aldehyde leading to the Felkin **100** or anti-Felkin product **101**, respectively.

This anti aldol reaction has also been extended to propyl and α -alkoxymethyl ketones with similarly high diastereoselectivities (Eq. 56). (110)

The synthetic utility of the anti aldol products is similar to those already discussed. Hence, a two-step protocol (lithium borohydride followed by sodium periodate) affords aldehydes of general structure **102**, while removal of the α -benzoate group with samarium diiodide gives ethyl ketones **103**, Eq. 57. (117)

3.3. Substrate-Mediated Aldol Reactions Using Chiral Ketones

The asymmetric induction imparted by chiral aldehydes alone is usually insufficient to lead to highly selective boron-mediated aldol reactions (vide supra). Hence, it is usually necessary to impart stereocontrol from a chiral enolate. This has already been demonstrated for the auxiliary-mediated aldol reaction where the auxiliary group is subsequently removed. This section outlines reactions of chiral ketones where the controlling stereocenter(s) is retained, not just in the aldol product, but also in the target molecule. Such an approach is often more direct than using auxiliary control, as steps to install and then remove the auxiliary are not required.

3.3.1. α -Chiral Ketones

One of the most simple and effective chiral ketones for use in asymmetric aldol reactions is ethyl ketone **104**, which acts as a dipropionate equivalent for the synthesis of polypropionate natural products. (**119-121**) It is synthesized in three steps from commercially available (*S*)-methyl 3-hydroxy-2-methylpropionate. (**122**) The same route is followed in the enantiomeric series starting from the (*R*)-ester. The (*E*)-boron enolate **105** of this ketone, generated by reaction with (C_6H_{11})₂BCI /Et₃N, reacts with aldehydes to give anti-anti aldol adducts with high levels of diastereoselectivity (>95% ds) (Eq. 58). (**120**, **122**)

Transition-state structure **TS 12** accounts for the selectivity of this anti aldol reaction. (6) The benzyloxymethylene unit of the ketone faces into the transition state, and this contra-steric arrangement is explained by the avoidance of lone-pair repulsion between the enolate oxygen and that of the benzyl ether substituent (cf. **TS 13**). If the ether oxygen is replaced by a methylene group, the enolate face selectivity is greatly reduced.

This aldol reaction is particularly well suited to the synthesis of complex polyketide natural products and has been used in the synthesis of swinholide A, (208, 213) denticulatins A and B, (123, 124) oleandolide, (122, 125) and muamvatin. (126) For the last, the chiral enolate **ent-105** was added to the chiral aldehyde **106** to give anti adduct **107**, resulting from a matched aldol reaction (Eq. 59). Note that the benzyl

protecting group of the ketone can be varied to include PMB and TIPS, although the latter leads to reduced selectivity.

The reaction has also been extended by the in situ reduction of the initially formed boron aldolate, thus affording syn 1,3-diols selectively in a single operation (Eq. 60). (123, 124, 127)

The analogous α -alkoxymethyl ketones are equally successful in anti aldol reactions. The aldol addition of chiral ketone **108** with aldehyde **109** proceeds with high stereocontrol (97% ds) to afford adduct **110**, a C(24)–C(32) subunit of the macrolide rapamycin. (128)

Chiral methyl ketone **111** undergoes aldol reactions with useful levels of 1,4-asymmetric induction to give β -hydroxy ketone **112** preferentially (Eq. 62). (120) The diastereoselectivity of this reaction is improved by the use of chiral ligands on boron; this is discussed further in the next section.

A related anti aldol reaction, which again uses dicyclohexylboron chloride for enolization, is that of β -keto imides (Eqs. 63 and 64). (129) In these systems, the α -methyl group is the controlling asymmetric influence; the auxiliary stereocenter of the enolates 113 and 114 has little effect.

3.3.2. β -Alkoxy Chiral Ketones

Another well-studied group of chiral ethyl ketones are compounds **115** and **116**. (21, 26, 38, 129-133) It is possible to generate selectively either the (*E*)- or (*Z*)-enolate of these α -methyl- β -alkoxy systems, which then display high levels of asymmetric induction with achiral aldehydes.

Results indicate that the β -stereocenter of the ketone plays a limited role in these reactions because the compounds epimeric at this stereocenter lead to similar levels of asymmetric induction in anti aldol reactions (Eq. 65). (129) Therefore,

the α -methyl group is the principal controlling influence which acts in the opposite sense to the previously mentioned anti aldol examples (cf. enolates **105**, **113**, and **114**). This has been rationalized by a steric model **TS 14**, where the large group (R_L) occupies the outside position in the chair transition state and A(1,3)-strain is minimized. (6, 129, 134)

The reaction of the (*E*)-boron enolate **117** has also been studied with chiral aldehydes. (38) These reactions proceed with good levels of control when the enolate is matched with the aldehyde in a Felkin sense as in product **118**. The dominant influence in these reactions is from the enolate, and even the

mismatched case giving adduct **119** proceeds in good yield, although with lower levels of asymmetric induction (81% ds). (38)

The analogous syn aldol reaction of these systems is also synthetically useful (130, 132, 135) and has been applied to the synthesis of ebelactones A and B (see Application to Synthesis section). (21, 26) Again, the β -alkoxy group of the enolate **120** plays a limited role in the reaction; the steric transition state model **TS 15** accounts for preferential formation of product **121** (Eq. 68). (6, 134)

In the preceding examples, the α -methyl group of the enolate controls the selectivity of the aldol reactions. (*Z*)-Enol borinate **122**, where such an α -methyl group is absent, reacts with achiral aldehydes with high levels of 1,4-asymmetric induction giving, for example, adduct **123** (Eq. 69). (136)

When this reaction was applied to the synthesis of the macrolide bafilomycin A_1 , it again performed well, affording the desired aldol product **124** exclusively (Scheme 5). (136) These aldol reactions are notable for the utilization of the uncommon chlorophenylboron enolate. (137) **Scheme 5**.

This last example highlights the benefit of developing reaction conditions whereby the stereochemistry of the aldol substrates can be used to advantage in the concise synthesis of complex systems. There are times, however, when the inherent facial bias of the enolate and the aldehyde are mismatched. The use of chiral ligands on boron then offers the possibility of enhancing the required selectivity, and this is discussed in the following section.

3.4. Ligand-Mediated Aldol Reactions Using Chiral Boron Reagents

The use of chiral ligands on boron for stereochemical control in aldol reactions of ketones and thioesters with aldehydes corresponds to reagent control. This contrasts with the substrate control provided by chiral ketones or chiral

aldehydes. A significant advantage of this class of boron-mediated aldol reactions is that it produces enantiomerically enriched synthetic intermediates from simple prochiral starting materials. It also provides the possibility of using a chiral reagent to reinforce and perhaps even overturn the inherent stereochemical bias of a chiral ketone or aldehyde.

3.4.1. Isopinocampheyl (Ipc) Ligands on Boron

Among the most common reagents used are the two enantiomeric forms of diisopinocampheylboron chloride, Ipc₂BCI, which is a commercially available crystalline solid. (138) This reagent

was introduced for the asymmetric reduction of ketones; (139, 140) the corresponding boron triflate was first used for the asymmetric aldol reaction of an azaenolate. (141, 142) The boron chloride can itself be a useful chiral reagent for aldol reactions, or the corresponding diisopinocampheylborane (Ipc₂BH) can be used to prepare the triflate. (121, 141)

The use of the boron triflate in conjunction with the hindered base diisopropylethylamine leads to the formation of (Z)-enolates from ethyl ketones and subsequently to syn aldol products. (133) As can be seen from Eq. 70, the asymmetric

aldol reaction of diethyl ketone with aldehydes facilitated by (–)-lpc₂BOTf proceeds in good yield to afford aldol products with enantiomeric excesses up to 93%. (121, 143) The in situ reduction of the boron aldolates of these reactions provides enantiomerically enriched 1,3-diols in moderate yield (Eq. 71). (144)

The corresponding methyl ketone aldol reaction (Eq. 72) with the same reagent system affords aldol adducts which are lower in enantiomeric purity and,

surprisingly, of opposite aldehyde facial selectivity than the ethyl ketone reaction. (121,145) This is explained by the ethyl ketone reaction proceeding through a chair-like transition state, with the methyl ketone reaction preferring a twist-boat arrangement. (146)

An extension of this work uses Ipc₂BH, which reacts with enones in a conjugate fashion, thus generating a chiral boron enolate. (147, 148) This reaction has the advantage of controlling the regiochemistry of enolate formation and, at times, leading to the preparation of otherwise inaccessible enolates. (149, 150) An example is the reaction of β -ionone (125) with Ipc₂BH and subsequent aldol addition to either acetaldehyde or benzaldehyde (Eq. 73). Under standard enolization conditions, the exclusive formation of this particular (*Z*)-boron enolate would not be possible. (147, 148)

The lpc₂BOTf and lpc₂BCl reagents have also been used in conjunction with chiral ketones in double stereodifferentiating aldol reactions. For example, the aldol reaction of enolate **126** with achiral ligands on boron affords adduct **127** with reasonable selectivity. When chiral ligands on boron are chosen in a matched sense, the selectivity and yield of the reaction improve considerably. $(120, 151)^{\circ}$

An informative example of this concept is the aldol reaction of chiral ketone **104** (Eq. 75). Using an achiral boron reagent the reaction was nonselective, giving

a mixture of syn aldol isomers **130** and **131** in approximately equal amounts. (119) However, with the use of either (+)- or (–)- Ipc_2BOTf , either of the syn adducts can be produced with high stereocontrol. (119)

A kinetic resolution process using an asymmetric boron aldol reaction has also been performed with Ipc₂BOTf. (131, 133) Enolization of racemic chiral

ketones with (+)-lpc₂BOTf affords diastereomeric enolates, which may react with aldehydes at different rates. In Eq. 76, reaction of the diastereomeric enolates 132 and 133 with half an equivalent of methacrolein affords enantiomerically enriched aldol products (95%ee) from the faster reacting, matched enolate 132.

3.4.2. Borolane Reagents

Two chiral boron reagents which are structurally related to each other are the C_2 -symmetric triflate **136** (152, 153) and chloride **137**, (154-156)

both of which are prepared by a resolution procedure. These borolane reagents are efficient for asymmetric thioester aldol reactions, including reactions of acetates which are difficult to control using chiral auxiliary protocols (Eq. 77). (152, 155)

These reagents have also been used successfully in anti aldol reactions of α -substituted thioesters with aldehydes. With the use of a bulky group on sulfur, generation of the (*E*)-enolate is favored, which then leads to the formation of anti aldol adducts with high diastereo- and enantioselectivity (Eq. 78). (152, 155)

This work has been extended to reagent control in aldol additions to chiral aldehydes. (157) The strong induction from the boron enolate is effective in over-turning any existing facial bias of the aldehyde. For example, either of the two diastereomeric products 138 or 139 is prepared in good yield from aldehyde 140 by appropriate choice of chiral boron reagent (Eq. 79). (158)

" ent-136, (88-93%) 138:139 = 11:89

Reagent **136** has been successfully applied to the aldol reaction of ketone substrates as well as thioesters. The example shown in Eq. 80 is from the total synthesis of bryostatin 7. (153, 159, 160) Use of an achiral boron reagent indicated that the β -oxygenated chiral enolate **141** has little facial bias, and hence the use of chiral ligands on boron was necessary for a synthetically useful reaction.

3.4.3. Menthone-Derived Ligands

Another series of boron reagents for aldol reactions are the computer-designed reagents **144** (161) and **145**, (162, 163) both of which

[(-)-(Menth)CH₂]₂BCl, (144)

[(-)-(Menth)CH₂]₂BBr, (145)

are derived from the methylenation and subsequent hydroboration of menthone. While the boron chloride **144** does not promote efficient enolization of thioesters, the bromide reagent **145** is sufficiently reactive, leading to products **146** of high enantiomeric purity (Eq. 81). (162)

The selectivity obtained from this reagent overrides the influence of several chiral aldehydes in aldol additions, thus providing an example of double stereo-differentiation. (164, 165) Aldol reaction using either of the enantiomeric reagents with α -benzyloxy aldehyde 147 overturns any inherent facial bias of the aldehyde (Eq. 82). (164)

Use of the boron chloride reagent [(–)-(Menth)CH₂]₂BCl for the aldol reaction of methyl ketones (161) leads to enantioselectivities comparable to those obtained with the Ipc₂BCl reagent (Eq. 83). (121) On the other hand, the anti aldol reaction of diethyl ketone using [(–)-(Menth)CH₂]₂BCl is greatly superior to the same reaction using Ipc₂BCl (Eq. 84).

A useful extension of this work has involved the anti aldol reaction of a variety of α -substituted thioesters, for example, compounds **150** and **151**, which proceed with high levels of asymmetric induction to afford products **152** and **153**, respectively (Eqs. 85 and 86). (163)

3.4.4. Diazaborolidine Reagents

While several chiral boron reagents are successful for the asymmetric aldol reaction of thioesters, only reagent **154** has been used for the corresponding reaction of esters. The boron bromide **154** is effective for the asymmetric anti aldol reaction of *tert*-butyl esters (19, 166-168) and for the syn aldol reaction of phenyl thioesters (Eq. 87). (19, 168, 169)

It is worth noting that the reaction of diethyl ketone and benzaldehyde with the related diazaborolidine reagent **ent-155** affords aldol product **158** with an enantiomeric excess higher than any previous results for this reaction. (169, 170)

3.4.5. Boronates

Chiral enol boronates which utilize tartrate-derived ligands on boron have also been used in boron-mediated aldol reactions. α -Unsubstituted enolate 159 reacts with aldehydes to afford adducts, 160 for example, with moderate enantiocontrol (Eq. 89). (171)

In contrast to enol borinates of ethyl ketones, (*E*)- and (*Z*)-enol boronates of ethyl ketones add to aldehydes in a stereo-convergent manner to give syn aldol products. (31, 172-176) With this in mind, it is interesting that (*E*)-enol boronate (*E*)-161 affords greater asymmetric induction than the corresponding (*Z*)-enol

boronate (Z)-161 (Eq. 90). (177) It should be noted that these enolates are not formed by direct enolization of 2-butanone.

3.5. Triple Asymmetric Induction

The most complicated aldol couplings are those between chiral ketones and chiral aldehydes mediated by chiral boron reagents. There have only been a few reported examples of these triple stereodifferentiating aldol reactions; (35, 178-180) this area of research will provide many interesting results in the future. To date, only methyl ketones have afforded reasonable yields; the enolization of sterically demanding ethyl ketones with bulky chiral boron reagents is problematic. It appears that the intrinsic facial selectivities of the components combine in an additive fashion. (8) One such example is shown and indicates that when the individual components of the reaction complement each other in a matched sense, as in the formation of 162, highly selective reactions are possible. (178)

4. Application to Synthesis

The excellent levels of selectivity and high yields obtained in the boron-mediated aldol reaction have ensured that it has become the cornerstone of many total syntheses. The auxiliary-mediated reaction has commonly been used for the enantiocontrolled synthesis of subunits and also as a reliable method for the introduction of functionality at a late stage. A more concise approach is the use of chiral ketones in aldol reactions for the stereocontrolled synthesis of complex fragments. The coupling of these units may also use a boron-mediated aldol reaction, and chiral boron reagents allow the possibility of enhancing the required selectivity.

4.1. Cytovaricin

In the synthesis of the macrolide cytovaricin, the Evans syn aldol reaction is used five times in all. (61) Three of the boron-mediated aldol reactions were performed with chiral imide 164 and achiral aldehydes, while two were performed on more complicated substrates, including the example shown in Eq. 92, which afforded compound 165 as a single stereoisomer in 87% yield.

4.2. Macbecin I

The efficiency of the oxazolidinone aldol reaction has sometimes stimulated similar synthetic approaches to a target. In the Baker (181-184) and Evans (185, 186) syntheses of macbecin I, both groups use the same auxiliary-mediated syn aldol reaction to build the C(14)-C(15) bonds (Eq. 93). Similarly, both use a boron aldol reaction to build the C(6)-C(7) bond, and Evans also uses such a reaction to introduce the C(10)-C(11) stereocenters. Subsequently, Martin (46) has completed a formal total synthesis of macbecin I, which again uses a boron-mediated aldol reaction to form the C(6)-C(7) and C(10)-C(11) bonds.

4.3. FK-506

The utility of boron-mediated aldol reactions is readily apparent from synthetic efforts toward the immunosuppressant FK-506. In the Merck synthesis, the four different chiral imides shown are used in five auxiliary-mediated aldol reactions. (57, 187, 188)

The reliability of the boron-mediated aldol reaction for the stereocontrolled formation of carbon–carbon bonds is highlighted in this synthesis. A key step is the reaction of boron enolate **51** with complex aldehyde **166**, which proceeds in 88% yield to give adduct **167** (Scheme 6). The two newly generated stereocenters from this reaction become part of the tricarbonyl unit of FK-506 and hence the aldol reaction is important, not for the stereocenters generated, but instead as an efficient carbon–carbon bond-forming step. It is also notable that several groups incorporate the C(21) allyl group via a boron-mediated aldol reaction. Again, this generates a stereocenter at C(22) which is subsequently lost through oxidation. (57, 189-191) **Scheme 6**.

Apart from those already mentioned, several other synthetic approaches to FK-506 have used boron-mediated aldol reactions; (192-194) an interesting variation is the use of the chiral boron reagent **168** which was used in the stereocontrolled construction of a C(18)-C(35) segment (Eq. 94). (195)

4.4. Discodermolide

Another demanding synthetic target with immunosuppressant activity is discodermolide. One synthesis of this molecule relied upon Evans syn aldol reactions generating eight of the thirteen stereocenters. (196) The observation of a common stereochemical triad in discodermolide resulted in the aldol product **169** being used for three separate segments in the Smith total synthesis. A further boron aldol reaction provided the C(16)-C(17) unit.

Other approaches to discodermolide have also used boron-mediated aldol reactions. In the Paterson approach (Scheme 7), two anti aldol reactions under substrate control were used to construct the C(4)-C(5) and C(12)-C(13)

bonds. (127, 197) Here, the former bond construction was followed by in situ reduction of the boron aldolate to introduce the C(3) stereocenter. Scheme 7.

A third approach to discodermolide uses an anti aldol reaction for the C(4)–C(5) bond, while an Evans syn aldol reaction is again used to construct the C(11)–C(12) bond. The anti aldol/reduction sequence is used to establish the four contiguous stereocenters of the δ -lactone portion (Eq. 96). (198, 199)

4.5. ACRL Toxin IIIB

While the use of syn aldol reactions has become common practice, there are few examples of *auxiliary*-controlled anti aldol reactions. A notable exception is the synthesis of ACRL toxin IIIB (Scheme 8), where two anti aldol reactions both proceed with high diastereoselectivity (>99%ds). (118) **Scheme 8**.

4.6. Elaiophylin

An advanced intermediate in the synthesis of the C₂-symmetric antibiotic elaiophylin was obtained from a double aldol reaction of dialdehyde **170** with two equivalents of the (*Z*)-boron enolate **171** (Eq. 97). (180, 200) This aldol reaction is notable in that it accommodates an acid-sensitive glycosidic linkage in the ketone

portion. Unfortunately, the desired product was obtained as the minor isomer in only 13% yield. The use of chiral ligands on boron failed to overturn the substrate selectivity observed in this aldol reaction.

A synthesis of an elaiophylin aglycone again utilizes a double boron-mediated aldol reaction of dialdehyde **170**. (201-203) In this case, the construction of the dialdehyde included an Evans syn aldol reaction to install the C(7)–C(8) bond. Reaction of compound **170** with an excess of (*Z*)-boron enolate **175** afforded the required aldol adduct in just 9% yield, again as the minor product of the reaction.

It might be anticipated that in the two previous examples, the addition of a (*Z*)-boron enolate would favor the formation of the desired anti-Felkin product, but this was not the case. It is interesting that the same stereochemical motif is found in bafilomycin A_1 (see page 31); an aldol reaction with substrate control was successful in obtaining the desired anti-Felkin product as the sole observed stereoisomer. (136)

4.7. Denticulatin A and B

Denticulatins A an B are challenging polypropionate synthetic targets and several total syntheses of these compounds have been reported. (123, 124, 204-207) The targets are well suited to the use of boron aldol reactions for bond construction, and three different examples are now highlighted.

Paterson uses an anti aldol reaction of chiral enolate **105**, followed by an in situ reduction of the boronate intermediate, to set up four of the required stereocenters of the natural products (Eq. 98). (123, 124) Hoffmann uses a syn aldol reaction as the penultimate step to couple the two halves **176** and **177** of the denticulatins, where the minor product is epimeric at C(12) resulting from the presence of the enantiomeric enolate (Eq. 99). (205, 206) A third synthesis of the denticulatins, reported by Oppolzer, (207) uses meso-dialdehyde **178** in a symmetry-breaking,

boron aldol reaction (Eq. 100). Addition of boron enolate **179** with dialdehyde **178** gives a major aldol product corresponding to a matched, anti-Felkin reaction.

4.8. Ebelactone A and B

A synthesis of the enzyme inhibitors ebelactone A and B utilizes three different boron-mediated aldol reactions (Scheme 9). (21, 26) **Scheme 9**.

The first is controlled by chiral ligands on boron to afford adduct **180** in 86% ee. The second uses substrate control from the chiral ketone **181** to give the syn product **182** with high selectivity (95% ds). Finally, anti aldol addition of (*E*)-boron enolate **183** (R = Me or Et) to chiral aldehyde **184** affords the ebelactone A and B precursors **185** and **186**, respectively.

Ebelactone A, R = Me Ebelactone B, R = Et

4.9. Swinholide A

Swinholide A is a cytotoxic marine polyketide with a 44-membered macrodiolide structure. Two groups have reported approaches to this compound which rely upon boron-mediated aldol reactions. (35, 208-212)

In the Paterson total synthesis, (210) the anti aldol reaction of the (*E*)-boron enolate **105** with enal **187** gives aldol adduct **188** with ³97% diastereoselectivity (Scheme 10). (208, 213) An aldol reaction of chiral enolate **189** with aldehyde **190** affords adduct **191** (80% ee), which is then transformed into the dihydropyran unit of the natural product. (209, 214) A third boron aldol reaction was used in the first synthesis of preswinholide A (the monomeric form of swinholide A). (35, 215) Because aldehyde **192** undergoes unwanted si-face attack with (*Z*)-boron enolates, an anti aldol reaction with the isomeric (*E*)-boron enolate was employed with inversion of the C(15) stereocenter at a later stage. Unfortunately, attempts at triple asymmetric induction by using chiral ligands on boron had little effect apart from lowering the yield of the required aldol adducts. (**35**) **Scheme 10**.

Nakata's approach to swinholide A uses two auxiliary-controlled boron aldol reactions in the synthesis of the C(11)–C(32) unit (Eq. 101). (211, 212) The first introduces the C(21)–C(22) stereocenters and the second aldol coupling unites two advanced fragments **193** and **194**.

5. Comparison with Other Methods

While boron enolates are easily formed and frequently react with aldehydes to afford β -hydroxy carbonyl compounds with high levels of stereocontrol, other metal enolates can act in a complementary fashion. The Mukaiyama aldol and allylation/crotylation reactions are closely related to metal-mediated aldol reactions and these are also briefly discussed in this section.

5.1. Use of Other Metals in Asymmetric Aldol Reactions

Because of their ease of formation by enolization of ketones, esters, and thioesters, lithium-mediated aldol reactions are commonly exploited in synthetic endeavors. (1-8) However, compared with boron enolates, lithium enolates are more basic, and aldol selectivity is generally lower and less easy to predict. It is more difficult to control lithium enolate geometry and also, for ketones, the enolate regiochemistry. Moreover, the geometry of a specific lithium enolate may no longer be faithfully translated into the relative stereochemistry of the aldol product (i.e., syn versus anti selectivity). Nevertheless, stereoselective lithium-mediated aldol reactions are possible, as seen in Eqs. 102 (216) and 103. (217)

Titanium and zirconium enolates normally afford highly syn-selective aldol reactions, irrespective of their enolate geometry. (2, 218) This stereoconvergent behavior is rationalized by (*Z*)-enolates reacting through

chair transition states, while (*E*)-enolates favor boat transition states. An exception to this generalization is the zirconium-mediated, anti-selective aldol reaction of ester **197** (Eq. 104). (219)

Titanium-mediated aldol reactions can proceed with high levels of substrate control and sometimes in higher yield than their boron counterparts. In Eq. 105, the titanium (220) and boron (135) enolates favor production of the same syn aldol product **198**, while lithium favors the diastereomeric syn product **199**. (221)

Like enol borinates, titanium enolates offer a good method for the stereocontrolled coupling of complex fragments in total syntheses. Such a reaction is seen in the synthesis of the macrolide antibiotic rutamycin B (Eq. 106). (222, 223)

Chiral ligands on titanium can promote enantioselective aldol reactions. Transmetallation of the lithium enolates of acetate and propionate esters with chlorotitanium reagent **200** leads to useful levels of reagent-based asymmetric induction (Eq. 107). (224, 225)

Tin(II) enolates are readily prepared by reaction of certain carbonyl compounds and tin(II) triflate in the presence of an amine base. (5) These enolates are more reactive than boron enolates and can afford high levels of selectivity in aldol reactions. Whereas the boron and lithium enolates of imide **201** give low selectivities upon reaction with aldehydes, the tin(II) enolate is highly successful (Scheme 11). (226) **Scheme 11**.

A comprehensive study which examined five different metal enolate derivatives of α -chloro- and α -bromoacetimides offers an insight into the different selectivities of this system (Eq. 108). (59, 60)

M = BBu₂, (52%) 202:203:204:205 = >98:<2:0:0

From these results, it was concluded that lithium, zinc, and tin(IV) favor a transition state with chelation of the oxazolidinone carbonyl to the metal center, while boron and tin(II) do not. A similar argument has been used to account for the selectivity of the titanium-mediated aldol reaction of a related oxazolidinone (Eq. 109). (227, 228)

There are many examples where different metal enolates react in a complementary fashion. While the (*E*)-boron enolate of the chiral ketone **105** shows high levels of substrate control in anti aldol reactions (see Eq. 58, page 27), (120) chiral ligands on boron are necessary for synthetically useful levels of control in the syn aldol reaction of the (*Z*)-boron enolate reaction (Eq. 110). (119, 122) On the other hand, the tin(II) (*Z*)-enolate shows good selectivity in favor of the syn aldol product **208** (Eq. 110). (229)

A similar example of the complementary behavior of different metal enolates concerns the chiral ketone **210** (Scheme 12). Reaction of the tin(II) and titanium enolates both afford syn aldol products, but in the opposite relative sense. (230) As already mentioned, the (E)-boron enolate of this system affords anti aldol products with synthetically useful levels of control. (129) **Scheme 12**.

In an impressive example of the differing behavior of various metal enolates, each of the four possible diastereomeric aldol products (**211-214**) of related chiral ketones is formed by appropriate choice of metal enolate. (109) Hence, the lithium and boron (*Z*)-enolates both give syn aldol products, with lithium favoring a chelation pathway (Eq. 111). Similarly, generation of the (*E*)-magnesium and titanium enolates leads to the two different anti aldol products (Eq. 112). (109)

5.2. Mukaiyama Aldol Reactions

In contrast to most boron-mediated aldol reactions, the Lewis acid catalyzed reaction of silyl enol ethers with aldehydes proceeds through an open transition state where the geometry of the enol ether may not be reflected in the aldol product stereochemistry. Felkin–Anh control from the aldehyde component is particularly strong in Mukaiyama aldol reactions (Eq. 113), (231) and similarly,

 β -oxygenated stereocenters of aldehydes imply a strong facial bias (Eq. 114). (232, 233)

Auxiliary control from the enol ether is possible in the Mukaiyama aldol reaction, as can be seen from the example in Eq. 115. (234) Excluding auxiliary controlled

reactions, induction from a chiral enol ether is less common. A notable exception is the 1,4-diastereoselectivity observed for the chiral enol ether **215** (Eq. 116). (235)

The Mukaiyama aldol reaction is versatile in that choice of either a chelating (e.g., SnCl₄) or nonchelating (BF₃•OEt₂) Lewis acid can give either diastereomeric product if the aldehyde has a suitable chelating group in the α or β position (Eq. 117). (236-238)

When Felkin control from α -methyl chiral aldehydes is desired, the Mukaiyama aldol reaction is the method of choice; such a reaction is common in natural product synthesis. One example is the key fragment coupling step in the synthesis of swinholide A (Eq. 118). (35)

A stereocontrolled Mukaiyama aldol coupling reaction is also found in the synthesis of (+)-calyculin A. (40, 239) Again, Felkin control leads to the desired product **218** in good yield as the only observed diastereomer (Eq. 119). In a subsequent

synthesis of (–)-calyculin A, a similar Mukaiyama aldol reaction to form the C(20)–C(21) bond proved too slow to be synthetically useful. (240) On this occasion, a boron-mediated aldol reaction was superior and, using bulky ligands on boron, afforded exclusively the desired product **219** in excellent yield (Eq. 120). A third synthesis of calyculin utilized the reaction of potassium enolate **220** with aldehyde **221**; this again gave the desired product **222** as the major isomer (95% ds). (241) These examples highlight the versatility of the aldol reaction in acyclic situations and show how a reaction can be tuned to afford the desired stereochemistry by appropriate choice of enolate.

An important point concerning the use of silyl enol ethers is that the Mukaiyama aldol reaction allows chiral modification of the Lewis acid promoter. For example, titanium(IV) complex **223** catalyzes (2 mol%) the reaction of silyl ketene acetals with aldehydes to afford silylated aldol products in good yield and high enantiomeric excess (94–97% ee) (Eq. 122). (242)

The tartaric acid derived chiral (acyloxy)borane complex **224** catalytically (20 mol%) promotes the addition of silyl enol ethers and ketene acetals with various aldehydes (Eq. 123). (243, 244)

The use of chiral diamines with Sn(II) species efficiently promotes asymmetric Mukaiyama aldol reactions. By choice of protecting group, the asymmetric synthesis of either syn or anti 1,2-diol units is achieved with high levels of enantioselectivity (Eq. 124). (245)

5.3. Asymmetric Allylations and Crotylations

Allylation and crotylation reactions are closely related to aldol reactions and are often used to synthesize similar polyketide-derived natural product fragments. While several different allyl and crotylmetal reagents are available, boron is frequently the metal of choice, and cyclic transition states are again operative. (246) As in the boron-mediated aldol reaction, crotylboration reactions show a strong relationship between reagent geometry and product stereochemistry. Again, (*Z*)-reagents give syn products with anti-Felkin selectivity and (*E*)-reagents afford anti products with moderate Felkin control. (247) Transition states similar to those already depicted for boron-mediated aldol reactions have been proposed to explain the selectivity of the reaction. (246) It should be noted that allylor crotylboron reagents are apparently more reactive with aldehydes than the corresponding boron enolates. Another important difference between the reactions is that removal of the boron during workup is usually more difficult for allyl/crotylborations.

Chiral ligands on boron are successful in controlling the allylation/crotylation

reaction. Isopinocampheyl- (Eq. 125) (248-250) and tartrate- (Eq. 126) (251-254) derived

reagents are the most commonly used, while other chiral reagents are also available (Eq. 127). (205, 255)

In certain cases, these reactions are more selective than the corresponding
boron-mediated aldol reactions. Allylation reagent **227** (256) affords products of higher enantiomeric excess than the corresponding methyl ketone aldol reaction. (121) Surprisingly, the aldehyde facial selectivity is opposite in these two reactions and this is explained by the allylation (Eq. 128) proceeding through a chair

transition state, (257) whereas the unsubstituted enolate **228** (Eq. 129) reacts via a boat transition state. (146)

Allylations and crotylations are especially well suited to an iterative synthetic strategy. For example, the C(19)–C(29) fragment **229** of rifamycin S was prepared by three successive crotylation reactions and one allylation reaction. (253) Similarly, the C(1)–C(9) segment **230** of denticulatins A and B was prepared in such a manner. (205,206) This highlights one difference between boron-mediated crotylations/allylations and the aldol reaction. The latter reaction is especially well suited to the joining of two large fragments, as desired in convergent natural product synthesis. The use of allylation/crotylation reactions in such convergent syntheses is limited by the availability of the necessary reagents.

6. Experimental Conditions

The most common method for the generation of boron enolates requires the use of a tertiary amine base in conjunction with a dialkylboron triflate or chloride reagent. Both of these boron reagents are strongly Lewis acidic and moisture-sensitive. Hence, like most water-sensitive reactions, a boron-mediated aldol reaction requires care in experimental technique. The reactions must be carried out under an inert atmosphere using anhydrous solvents and reagents. So long as the ketone and aldehyde are not overly volatile, they can be dried via azeotropic removal of water under reduced pressure. Sensitive aldehydes can be used without chromatographic purification, and residual impurities often do not hinder the reaction. A readily available aldehyde is frequently used in large excess compared with the enolate, but it is often better to use just a slight excess of the aldehyde.

Boron enolates are normally geometrically stable over the temperature range in which most reactions are conducted (–78° to room temperature). However, they do not store and need to be freshly prepared for best results.

While Bu_2BOTf and 9-BBNOTf are commercially available, most problems encountered in the boron-mediated aldol reaction result from the use of impure triflate reagents. If a given reaction is not performing well, freshly prepared boron reagent should be used. (258-260) While the choice of amine base between Et_3N and iPr_2NEt is normally arbitrary, Et_3N may be beneficial in that it more strongly coordinates excess Bu_2BOTf which may otherwise be detrimental, especially when sensitive aldehydes are used. (58,76,261,262) Other workers have noted that iPr_2NEt is superior to Et_3N (263) and hence experimentation may decide which of these two bases is better for a given reaction. Dichloromethane is normally the solvent of choice, although nonpolar solvents such as toluene or pentane can also be used. (57)

When using dialkylboron chlorides, diethyl ether is the favored solvent though dichloromethane and pentane are adequate. Dicyclohexylboron chloride is commercially available, but it is easily synthesized and can be stored at -20° for several months without noticeable deterioration. Both enantiomers of the boron chloride reagent lpc₂BCl are commercially available, and this material is suitable for most purposes.

The enolizing ability of the various reagents is important, especially when the enolization of carbonyl compounds other than ketones or imides is required. The enolization of esters can be achieved using boron triflate reagents such as Bu_2BOTf . (264,265) However, the selective enolization of an ethyl ketone in the presence of a potentially enolizable ester is possible using triflate reagents,

(21) and such an example is included in the Experimental Procedures section. Dialkylboron chlorides will not enolize esters and will only slowly enolize thioesters. Use of the corresponding dialkylboron bromides is often preferred for the latter reaction. Dicyclohexylboron iodide has been introduced as a reagent capable of the enolization of esters and amides. (266-268)

The boron-mediated syn aldol reaction of Evans auxiliaries operates well on a large scale (an experimental procedure for a 560-g reaction has been reported (269)) with the enolization carried out at 0°, then addition of the aldehyde at -78° . Certain reactions may not need to be performed at -78° ; for example, in Eq. 130 the aldehyde was added at 5° with no deterioration in the reaction selectivity. (270)

In a small number of cases, removal of the boron atom after an aldol reaction can be problematic, and a useful check for residual boron is ¹¹B NMR spectroscopy. Normally, an oxidative workup with aqueous H_2O_2/pH 7 buffer is employed, which oxidizes boron and leads to clean breakdown of the boron chelate, thus affording the aldol adduct. [CAUTION: H_2O_2 may generate organic peroxides.] Occasionally an oxidative workup is inappropriate, owing to sensitive functionality, and alternative procedures are available (see the Experimental Procedures section for such an example). Even after an oxidative workup, removal of the boron atom may occasionally be difficult, and azeotropic removal with methanol or addition of diethanolamine may be appropriate. The use of IRA-743 resin to sequester boron has also been reported. (129)

7. Experimental Procedures

7.1.1. Di-n-butylboron Triflate (Bu₂BOTf) (8d,8h,269)

To a well-stirred solution of Bu₃B (711 mL, 531 g, 2.92 mol) was added CF₃SO₃H (15 mL, 25.4 g, 0.17 mol). The reaction mixture was warmed to 40° and stirred until gas evolution commenced (usually <10 minutes) [CAUTION: venting of the evolved butane is necessary]. The remainder of the CF₃SO₃H (258 mL, 439 g, 2.92 mol) was then added dropwise via a dropping funnel such that the internal temperature remained at 40–45°. At the end of the addition, the temperature was raised to 50° and the flask was placed under vacuum (20 mm Hg). Subsequent distillation (64–65°/2.5 mm Hg) provided the title product (682 g, 85%) as a yellow oil. ¹³C NMR (CDCl₃) δ 118.1, 25.1, 21.5, 13.6 (one signal not observed).

7.1.2. Dicyclohexylboron Chloride [(C₆H₁₁)₂BCI] (14, 271)

To a solution of dried cyclohexene (21.2 mL, 210 mmol) in anhydrous Et₂O (90 mL) under an argon atmosphere at 0° was slowly added monochloroborane dimethyl sulfide (11.6 mL, 8.62 M, 100 mmol). The mixture was stirred at 0° for 2 hours and then the solvent was removed by distillation. The resulting crude product was distilled under reduced pressure (104–105°/0.5 mm Hg) to afford the title compound (16.65 g, 80%, d ~ 0.97) as a colorless oil. ¹¹B NMR (CDCl₃) δ 76.2. ¹³C NMR (CDCl₃) δ 36.3, 27.7, 27.2, 26.6.

7.1.3. (–)-Diisopinocampheylborane [(–)-lpc₂BH] of >99.5% ee (272)

To a solution of (+)- α -pinene (40 mL, 250 mmol, 91% ee) in THF (30 mL) maintained at 20–25° was added BH₃·Me₂S (10 mL, 100 mmol) slowly to control the mildly exothermic reaction. Precipitation may occur at this stage; if so, the reaction was warmed to 50° until dissolution occurred. The clear solution was then allowed to stand at room temperature for 18 hours after which it was cooled to 0° for 2 hours. The supernatant was removed and the crystalline lpc₂BH was washed with pentane (20 mL), then dried under reduced pressure to afford the title compound (25.9 g, 91%).

7.1.4. (–)-Diisopinocampheylboron Chloride [(–)-lpc₂BCl] (139, 142, 273) To a cooled (–78°) suspension of (–)-lpc₂BH (23.2 g, 81.2 mmol) in Et₂O (40 mL) was added a solution of anhydrous HCl (90 mL of a 1 M solution in Et₂O, 90 mmol). The reaction mixture was then allowed to warm to 0° and stirred at this temperature until a solution resulted (2 hours) [CAUTION: venting of the evolved hydrogen gas is necessary]. The reaction was then concentrated under reduced pressure taking care to maintain anhydrous conditions. The residue was then crystallized from anhydrous pentane to afford the title compound (18.6 g, 71%) as colorless crystals, mp 54–56°. ¹¹B NMR (CDCl₃) δ 74.0. ¹³C NMR (CDCl₃) δ 47.7, 41.0, 39.0, 37.5, 34.2, 32.7, 28.3, 28.1, 23.2, 22.7.

7.1.5. (–)-Diisopinocampheylboron Triflate [(–)-lpc₂BOTf] (119, 121, 140, 143)

TfOH (1.44 mL, 16.3 mmol) was added slowly to a gently stirred, cooled (0°) suspension of (–)-lpc₂BH (4.66 g, 16.3 mmol) in anhydrous hexane. After 15 minutes, the mixture was warmed to 20° (hydrogen evolution) and the colorless solution of the reagent was cannulated from the orange residue. Addition of hexane (6 mL) provided a reagent solution (ca. 1 M) which can be used in aldol reactions, or concentration followed by distillation (oven 130°,

0.05 mm Hg) affords the title compound. $\left[\alpha\right]_{D}^{22} - 43.5(c \ 30.4, hexane)$. ¹³C NMR

(CDCl₃) δ 118.9 (q, *J* = 318 Hz), 48.3, 41.5, 39.3, 37.3, 33.9, 28.6, 28.3, 23.4, 22.7.

7.1.6. (4S,5S,6S,7R)-5-Hydroxy-7-[4-(methoxybenzyl)oxy]-2,4,6,8-tetramet hylnonan-3-one (Anti Aldol Reaction of an Achiral Ketone with a Chiral Aldehyde) (38)

Dicyclohexylboron chloride (262 μ L, 1.22 mmol) was added to a cooled (0°) solution of 2-methylpentan-3-one (137 μ L, 1.11 mmol) in Et₂O (6 mL), followed by dropwise addition of Et₃N (186 μ L, 1.33 mmol). The resulting white mixture was stirred at 0° for 1 hour, then cooled to –78° and a solution of the aldehyde (250 mg, 1.00 mmol) in Et₂O (0.25 mL) was added dropwise and the resulting mixture stirred for 2 hours. The reaction was quenched by addition of pH 7 buffer (ca. 10 mL) and diluted with methanol (~5 mL). After the mixture was warmed to 0°, 30% aq. H₂O₂ (1.2 mL) was added and the mixture was stirred at room temperature for 1 hour. The volatiles were removed under reduced pressure and the residue extracted with Et₂O, then washed with NaHCO₃ and brine, dried (MgSO₄), and purified by MPLC (Michel–Miller column size C, 10% EtOAc/hexanes) to afford the title compound (294 mg, 84%). Silylation of crude material with 1-(trimethylsilyl)imidazole and subsequent GLC analysis

indicated an initial 93:7 ratio of aldol isomers. $\left[\alpha\right]_{D}^{21} - 41.5(c \ 1.20, CHCl_{3})$. IR

(thin film) 3483, 2967, 2935, 2875, 1711, 1613, 1587, 1515, 1464, 1382, 1302, 1250, 1036 cm⁻¹. ¹H NMR (CDCl₃) δ 7.27–7.22 (m, 2 H), 6.87–6.83 (m, 2 H), 4.54 (ABq, *J* = 10.5 Hz, 2 H), 4.13 (dt, *J* = 9.7, 1.3 Hz, 1 H), 3.79 (s, 3 H), 3.36

(d, J = 1.4 Hz, 1 H), 3.36 (dd, J = 8.2, 3.3 Hz, 1 H), 2.86 (dq, J = 9.8, 7.0 Hz, 1 H), 2.74 (septet, J = 6.9 Hz, 1 H), 2.05 (m, 1 H), 1.86 (ddq, J = 7.1, 3.3, 1.5 Hz, 1 H), 1.09 (d, J = 7.0 Hz, 3 H), 1.05 (d, J = 6.8 Hz, 3 H), 1.05 (d, J = 6.8 Hz, 3 H), 1.05 (d, J = 6.8 Hz, 3 H), 1.04 (d, J = 6.6 Hz, 3 H), 0.92 (d, J = 6.8 Hz, 3 H), 0.91 (d, J = 7.0 Hz, 3 H).

7.1.7. [3-(2S,3S)-4S]-3-(3-Hydroxy-3-phenyl-2-methyl-1-oxopropyl)-4-(phe nylmethyl)oxazolidin-2-one (Auxiliary Controlled Syn Aldol Reaction with an Achiral Aldehyde) (42)

Dibutylboron triflate (27 mL, 0.107 mol), followed by Et₃N (16.7 mL, 0.120 mol) were added dropwise to an ice-cooled solution of the imide (21.2 g, 0.091 mol) in CH₂Cl₂ (200 mL) so that the internal temperature of the reaction did not exceed 3° . The reaction mixture was then cooled to -78° and freshly distilled benzaldehyde (10.3 mL, 0.101 mol) was added via a syringe pump. The reaction mixture was stirred at -78° for 20 minutes and then warmed to 0° for a further 1 hour, after which pH 7 buffer (100 mL) and methanol (300 mL) were added. A solution of methanol–30% aqueous H_2O_2 (300 mL of a 2:1 solution) was then added cautiously at such a rate as to maintain the internal reaction temperature below 10°. After stirring at room temperature for 1 hour, the resulting mixture was concentrated to a slurry which was extracted with Et₂O (3 × 500 mL) and the combined organic extracts were washed with 5% aq. NaHCO₃ (500 mL), brine (500 mL), then dried (MgSO₄) and concentrated in vacuo to afford the crude aldol adduct. Recrystallization of this material (EtOAc/hexane) afforded the diastereomerically pure product (28.6 g, 93%), mp 92–93°. GC analysis of the crude aldol product indicated >97% diastereomeric purity; [α]_D + 75.7° (*c* 1.00, CH₂Cl₂). IR (CH₂Cl₂) 3520, 3040, 2980, 1695, 1455, 1385, 1212, 1110 cm⁻¹. ¹H NMR (CDCl₃) δ 1.2 (d, J = 7.0 Hz, 1 H), 2.8 (dd, J = 13.4, 9.5 Hz, 1 H), 3.1 (d, J = 2.7 Hz, 1 H), 3.3 (dd, J = 13.4, 3.4 Hz, 1 H), 4.1 (m, 3 H), 4.6 (m, 1 H), 5.1 (m, 1 H), 7.1–7.5 (m, 10 H).

7.1.8. (R)-3-{(2R,3S,6R)-3-Hydroxy-6-([(4-methoxyphenyl)methoxy]methyl)2-methyl-1-oxo-octyl}-4-(phenylmethyl)-1,3-oxazolidin-2-one (Auxiliary Controlled Syn Aldol Reaction with a Chiral Aldehyde) (274)

Dibutylboron triflate was added to a cooled (0°) solution of the imide (13.4 g, 57.7 mmol) in CH₂Cl₂ (105 mL) under nitrogen at such a rate as to maintain the internal temperature below 5°. Diisopropylethylamine (8.9 g, 69.1 mmol) was then added, giving a yellow solution which was cooled to -78° , and a solution of the aldehyde (13.1 g, 52.4 mmol) in CH₂Cl₂ (26 mL) was added dropwise. After 20 minutes, the solution was warmed to 0° and stirred at that temperature for 1 hour before being recooled to -10° and quenched by addition of pH 7 buffer (50 mL), methanol (250 mL), and 30% aq. H₂O₂ (50 mL). The resulting mixture was stirred at 0° for 1 hour and then concentrated in vacuo to remove the volatiles. The aqueous residue was extracted with Et₂O (3 × 150 mL), and brine (100 mL), then dried (MgSO₄) and purified by flash chromatography (55% EtOAc/hexanes) to afford the title compound

(25.30 g, 100%) as a colorless oil (ds > 99% by analytical HPLC). $[\alpha]_D^{28} - 40.9(c$

0.35, CHCl₃). IR (neat) 3530, 2940, 1785, 1700, 1515, 1385, 1245, 1210 cm⁻¹. ¹H NMR (CDCl₃) δ 7.27 (m, 7 H), 6.87 (m, 2 H), 4.69 (m, 1 H), 4.42 (s, 2 H), 4.20 (m, 2 H), 3.91 (m, 1 H), 3.80 (s, 3 H), 3.74 (qd, *J* = 7.1, 2.6 Hz, 1 H), 3.33 (d, *J* = 5.5 Hz, 2 H), 3.01 (m, 2 H), 2.89 (d, *J* = 3.0 Hz, 1 H), 1.66–1.29 (m, 7 H), 1.25 (d, *J* = 7.0 Hz, 3 H), 0.87 (t, *J* = 7.4 Hz, 3 H).

7.1.9. (2¢R,3¢S,5¢S,4R,5S)-3-(3¢-Hydroxy-5',6'-(isopropylidene-dioxy)-2¢-(methylthio)hexanoyl)-4-methyl-5-phenyloxazolidin-2-one (Auxiliary Controlled Syn Aldol Reaction of a Thiomethyl Imide) (56)

A solution of the imide (4.06 g, 15.3 mmol) in CH_2CI_2 (32 mL) cooled to 0° was treated with freshly prepared Bu₂BOTf (4.74 g, 17.3 mmol), and then *i*-Pr₂NEt (2.45 g, 24.1 mmol) was added and the mixture stirred at 0° for 70 minutes. The mixture was cooled to -70° and a solution of the aldehyde (2.00 g, 13.9 mmol) in CH_2CI_2 (10 mL) was added over 5 minutes. The reaction mixture

was then stirred for 14 hours while being allowed to warm to room temperature. After addition of pH 7 buffer (50 mL), the resulting mixture was stirred for 90 minutes and then extracted with CH_2Cl_2 (2 × 20 mL), dried (MgSO₄), and concentrated in vacuo. Flash chromatography (20% EtOAc/hexanes) afforded

the title compound (5.06 g, 89%) as a yellow oil. $[\alpha]_{D}^{23} + 12.3(c \ 0.42, CHCl_{3})$. IR

(neat) 3482, 2985, 1773, 1701, 1687, 1654 cm⁻¹. ¹H NMR (CDCl₃) δ 7.48–7.29 (m, 5 H), 5.70 (d, *J* = 7.5 Hz, 1 H), 4.84 (m, 1 H), 4.70 (d, *J* = 7.1 Hz, 1 H), 4.38 (m, 1 H), 4.23 (m, 1 H), 4.14 (dd, *J* = 8.2, 6.8 Hz, 1 H), 3.63 (dd, *J* = 8.2, 6.5 Hz, 1 H), 3.18 (d, *J* = 1.6 Hz, 1 H), 2.17 (s, 3 H), 1.84 (apparent t, *J* = 6.2 Hz, 2 H), 1.44 (s, 3 H), 1.37 (s, 3 H), 0.92 (d, *J* = 6.6 Hz, 3 H).

7.1.10. (4R)-3-[(2S,3S,4E,6E)-3-Hydroxy-2,4,6-trimethyl-1-oxa-4,6-nonadie nyl]-4-isopropyloxazolidin-2-one (Auxiliary Controlled Anti Aldol Reaction of an Imide Auxiliary with an Achiral Aldehyde Precomplexed with a Lewis Acid) (47)

To a cooled (0°) solution of the imide (370 mg, 2.0 mmol) in CH₂Cl₂ (4 mL) was added i-Pr₂NEt (390 µL, 2.3 mmol) followed by a solution of Bu₂BOTf (2.2 mL of a 1 M solution in CH₂Cl₂) and stirring was continued for 1 hour. Separately, CH₂Cl₂ (4 mL) was added to a solution of Et₂AlCl (3.3 mL of a 1.8 M solution in toluene) and after cooling to -78° , a solution of the aldehyde (415 mg, 3.0 mmol) was added. After the mixture was stirred for 5 minutes, the boron enolate was added dropwise and the reaction mixture was recooled to room temperature over a 12-hour period. After the mixture was recooled to -78° , methanol (10 mL) and 35% aq. H₂O₂ (2 mL) were added and after warming to 0°, water (20 mL) was added and the aqueous phase was extracted with Et₂O(4 × 50 mL). The combined organic fractions were washed with sat. aq. NaHCO₃ and brine (20 mL), then dried (MgSO₄), and concentrated. Column chromatography of the residue afforded an inseparable mixture of minor aldol isomers (15%) and the title compound (476 mg, 74%) as

colorless crystals, mp 88° (hexanes). $\left[\alpha\right]_{D}^{20} - 96.0(c 4.00, CH_2Cl_2)$. ¹H

NMR(CDCl₃) δ 5.88 (s, 1 H), 5.32 (br. t, *J* = 7.2 Hz, 1 H), 4.48–4.42 (m, 1 H), 4.31–4.00 (m, 1 H), 2.66 (d, *J* = 6.9 Hz, 1 H), 1.06 (d, *J* = 6.6 Hz, 3 H), 0.98 (t, *J* = 7.5 Hz, 3 H), 0.91 (d, *J* = 7 Hz, 3 H), 0.88 (d, *J* = 7 Hz, 3 H).

7.1.11. (1S,3R,4S)-4-Hydroxy-1-triethylsilyloxy-6-benzyloxy-1-cyclohexyl-3-vinylhexan-2-one (Auxiliary Controlled Syn Aldol Reaction of an α -Oxygenated Crotyl Ketone with an Achiral Aldehyde) (275)

To a cooled (-78°) solution of the ketone (150 mg, 0.506 mmol) in CH₂Cl₂ (10 mL) was added *i*-Pr₂NEt (224 µL, 1.29 mmol) followed by (C₅H₉)₂BOTf (256 µL, 1.03 mmol). The reaction was stirred at 0° for 2.5 hours and then cooled to -78° and a solution of the aldehyde (2.5 equiv.) in CH₂Cl₂ was added and the reaction mixture warmed to 0° and stirred for 2.5 hours. Methanol (3 mL), pH 7 buffer (3 mL), and 30% aq. H₂O₂ (0.5 mL) were added and stirring was continued for 1 hour. Usual workup (see other experimental procedures for examples) followed by column chromatography (15%)

Et₂O/hexane) afforded the title compound (215 mg, 93%). $[\alpha]_D^{25} + 118.37.32$ (m,

5 H), 5.84 (ddd, *J* = 18, 10, 9 Hz, 1 H), 5.32 (d, *J* = 10 Hz, 1 H), 5.26 (d, *J* = 18 Hz, 1 H), 4.51 (s, 2 H), 4.15 (m, 1 H), 3.96 (d, *J* = 5 Hz, 1 H), 3.72–3.52 (complex m, 4 H), 1.97–1.41 (complex m, 8 H), 1.30–0.83 (complex m, 5 H), 0.94 (t, *J* = 8 Hz, 9 H), 0.58 (q, *J* = 8 Hz, 6 H).

7.1.12. (2R,4R,5S,6S)-7-Benzyloxy-5-hydroxy-2-(p-methoxybenzyloxy)-4, 6-dimethylheptan-3-one (Auxiliary Controlled Syn Aldol Reaction of a Lactate-Derived Chiral Ketone with a Chiral Aldehyde) (276)

To a cooled (–78°) stirred solution of dicyclohexylboron chloride (2.67 mL, 13 mmol) in dry Et₂O (40 mL) under argon was added triethylamine (2.1 mL, 15 mmol) followed by a solution of the ketone (2.22 g, 10 mmol) in Et₂O (40 mL). After the reaction was stirred at –78° for 1 hour and then 0° for 3 hours, then recooled to –78°, a solution of the freshly prepared aldehyde (2.85 g, 16 mmol) in Et₂O (20 mL) was added. After stirring for 1 hour, the reaction mixture was transferred to the freezer (–25°) for 16 hours and then quenched at 0° by the addition of methanol (40 mL), pH 7 buffer (40 mL), and

30% aq. H_2O_2 (40 mL). Stirring continued for 1 hour, after which time the reaction mixture was partitioned between water (100 mL) and $CH_2Cl_2(3 \times 100 \text{ mL})$. The combined organic extracts were dried (MgSO₄) and concentrated in vacuo. Flash chromatography (10% EtOAc/hexanes) afforded a minor isomer (240 mg, 6%) and the title compound (2.96 g, 86%) as a

colorless oil. $[\alpha]_D^{20} - 10.7$ (c 0.69, CHCl₃). IR (thin film) 3491, 2975, 2935, 2873,

1715, 1612, 1514 cm⁻¹.¹H NMR(CDCl₃) δ 7.34–7.24 (m, 7 H), 6.87 (d, ABq, J = 8.6 Hz, 2 H), 4.50–4.40 (m, 4 H), 4.09 (q, J = 6.5 Hz, 1 H), 3.96–3.92 (m, 1 H), 3.80 (s, 3 H), 3.48 (dd, J = 9.2, 4.2 Hz, 1 H), 3.41 (dd, J = 9.2, 4.9 Hz, 1 H), 3.17–3.11 (m, 1 H), 3.00 (d, J = 2.0 Hz, 1 H), 1.84–1.76 (m, 1 H), 1.33 (d, J = 6.9 Hz, 3 H), 1.17 (d, J = 7.0 Hz, 3 H), 1.00 (d, J = 7.0 Hz, 3 H).

7.1.13. (2S,4R,5S)-2-Benzoyloxy-5-hydroxy-4,6-dimethyl-6-hepten-3-one (Auxiliary Controlled Anti Aldol Reaction of a Lactate-Derived Chiral Ketone with an Achiral Aldehyde) (110, 277)

To a cooled (-78°), stirred solution of freshly prepared dicyclohexylboron chloride (140 µL, 0.778 mmol) in anhydrous Et₂O (2 mL) under argon was added Me₂NEt (84 µL, 0.78 mmol) followed by a solution of the ketone (89.0 mg, 0.432 mmol) in Et₂O (2 mL). The reaction mixture was then warmed to 0° and stirred at this temperature for 3 hours before recooling to -78° , after which freshly distilled methacrolein (143 µL, 1.73 mmol) was added and stirring at -78° was continued for 2 hours before the mixture was transferred to a freezer (-26°) for a further 16 hours. The reaction mixture was quenched at 0° by addition of methanol (2 mL) and pH 7 buffer (2 mL); 30% aq. H₂O₂ (2 mL) was then added cautiously and stirring was continued for 1 hour. The resulting mixture was partitioned between water (30 mL) and CH₂Cl₂(3 × 30 mL) and the combined organic phases were dried (MgSO₄) and concentrated in vacuo and the crude material was subjected to flash chromatography (50% Et₂O/hexane), thus affording the title compound (116 mg, 97%, 99% ds by

HPLC analysis) as a white solid, mp 59–60°. $\left[\alpha\right]_{D}^{20} + 29.0(c \ 0.60, CHCl_3)$. IR

(CHCl₃) 3509, 1718, 1601 cm^{-1.1}H NMR(CDCl₃) δ 8.07 (d, *J* = 7.4 Hz, 2 H), 7.56 (t, *J* = 7.4 Hz, 2 H), 7.44 (t, *J* = 7.4 Hz, 2 H), 5.44 (q, *J* = 7.0 Hz, 1 H), 4.95 (s, 1 H), 4.92 (s, 1 H), 4.25 (d, *J* = 8.8 Hz, 1 H), 3.01 (dq, *J* = 8.8, 7.2 Hz, 1 H), 2.28 (s, 1 H), 1.71 (s, 3 H), 1.56 (d, *J* = 7.0 Hz, 3 H), 1.03 (d, *J* = 7.2 Hz, 3 H).

7.1.14. (3SR,4SR,6RS,7RS)-2-Ethyl-3-hydroxy-4,6,8-trimethyl-7-propanoyl oxy-1,8-nonadien-5-one (Syn Aldol Reaction of a Chiral Ketone with an Achiral Aldehyde) (21)

To a cooled (-78°) stirred solution of 9-BBN triflate (1.30 mL, 0.66 mmol, 0.5 M in hexanes) in Et₂O (2.0 mL) was added Et₃N (124 µL, 0.89 mmol), then a solution of the ketone (95 mg, 0.44 mmol) in ether (1.5 mL). The reaction mixture was stirred at -78° for 4 hours, then freshly distilled 2-ethylacrolein was added (215 µL, 2.20 mmol) followed by stirring for a further 1.5 hours at -78° . The reaction mixture was partitioned between pH 7 buffer (5 mL) and $CH_2CI_2(3 \times 10 \text{ mL})$ and the combined organic extracts were washed with brine (5 mL), dried (MgSO₄), and concentrated in vacuo. The resulting oil was dissolved in a methanol-pH 7 buffer mixture (5:1, 6 mL overall), cooled to 0°, and 30% aq. H_2O_2 (1 mL) was added, dropwise. The resulting mixture was stirred for 1 hour at 0°, then water (10 mL) was added followed by extraction with $CH_2Cl_2(3 \times 10 \text{ mL})$. The combined organic extracts were washed with sat. aq. NaHCO₃ (10 mL) and brine (10 mL), then dried (MgSO₄), and concentrated in vacuo to give the crude aldol product. HPLC separation (20% EtOAc in hexane) showed a ratio of 91:7:2 SS:SA:AS diastereomeric aldol products, which were isolated as a series of colorless oils (100 mg, 76% overall yield). The title compound was the major diastereomer: IR (thin film) 3500, 3100, 1735, 1710, 1645 cm^{-1.1}H NMR(CDCl₃) δ 5.44 (d, J = 5.9 Hz, 1 H), 5.13 (br s, 1 H), 4.94 (m, 2 H), 4.93 (br s, 1 H), 4.36 (br s, 1 H), 3.13 (d, J = 2.1 Hz, 1 H), 3.09 (dq, J = 6.7, 6.7 Hz, 1 H), 2.80 (qd, J = 7.3, 1.8 Hz, 1 H), 2.32 (q, J = 7.6 Hz, 2 H), 2.00–1.82 (m, 2 H), 1.74 (s, 3 H), 1.11 (t, J = 7.6 Hz, 3 H), 1.07 (d, J = 6.7 Hz, 3 H), 1.05 (t, J = 7.4 Hz, 3 H), 1.04 (d, J = 7.3 Hz, 3 H).

7.1.15. (2S,4S,5S,6E)-1-Benzyloxy-5-hydroxy-2,4-dimethyl-6-octen-3-one (Anti Aldol Reaction of a Chiral Ketone with an Achiral Aldehyde) (122)

To a cooled (-78°), stirred solution of (C_6H_{11})₂BCI (5.00 mL, 23.0 mmol) in Et₂O (30 mL) was added dropwise Et₃N (4.22 mL, 30.3 mmol) followed by addition of a solution of the ketone (3.90 g, 18.9 mmol) in Et₂O (20 mL), whereupon a white precipitate formed. After 3 hours at -78°, freshly distilled crotonaldehyde (3.13 mL, 37.8 mmol) was added dropwise and the reaction mixture was stirred at -78° for a further 3 hours, before being left in the freezer (-20°) for 16 hours. The reaction mixture was then partitioned between $Et_2O(3 \times 200 \text{ mL})$ and pH 7 buffer (200 mL) and the combined organic extracts were concentrated in vacuo; the residue was resuspended in methanol (50 mL) and pH 7 buffer (10 mL) and cooled to 0°. Hydrogen peroxide (20 mL, 30% aq.) was added dropwise and stirring was continued at room temperature for 1 hour. The mixture was then poured into distilled water (200 mL) and extracted with $CH_2CI_2(3 \times 200 \text{ mL})$. The combined organic extracts were washed in turn with 5% aq. NaHCO₃ (150 mL) and brine (150 mL), dried (MgSO₄), and concentrated in vacuo to afford a yellow oil. Flash chromatography (10% $Et_2O/$ CH₂Cl₂) provided 4.86 g (93%) of the desired anti-anti aldol product as a

colorless oil. HPLC analysis indicated > 98:2 selectivity. $|\alpha|_{D}^{20} + 17.1(c 4.3)$

CHCl₃). IR (thin film) 3440, 1700 cm⁻¹. ¹H NMR (CDCl₃) δ 7.33–7.25 (m, 5 H), 5.71 (dqd, *J* = 15.3, 6.4, 0.9 Hz, 1 H), 5.43 (ddq, *J* = 15.3, 7.7, 1.6 Hz, 1 H), 4.49 and 4.47 (ABq, *J* = 12.0 Hz, 2 H), 4.16 (apparent t, *J* = 7.7 Hz, 1 H), 3.67 (dd, *J* = 8.8, 8.7 Hz, 1 H), 3.44 (dd, *J* = 8.8, 5.0 Hz, 1 H), 3.07 (dqd, *J* = 8.7, 7.0, 5.0 Hz, 1 H), 2.81 (br s, 1 H), 2.75 (dq, *J* = 7.7, 7.1 Hz, 1 H), 1.70 (br d, *J* = 6.4 Hz, 3 H), 1.05 (d, *J* = 7.0 Hz, 3 H), 1.04 (d, *J* = 7.1 Hz, 3 H).

7.1.16. (2R,3S,4S,5S,6E)-2,4,6-Trimethyl-1-phenylmethoxy-6-nonene-3,5diol (Anti Aldol Reaction of a Chiral Ketone and an Achiral Aldehyde Followed by in situ LiBH₄ Reduction) (123, 124)

To a stirred solution of dicyclohexylboron chloride (2.4 mL, 11 mmol) in dry Et_2O (20 mL) was added Et_3N (1.6 mL, 11 mmol) and the mixture was cooled to -15° . A solution of the ketone (1.54 g, 7.5 mmol) in Et_2O (5 mL) was added and the mixture was stirred for 2 hours at -15° . A solution of (*E*)-2-methyl-2-pentenal (1.5 mL, 13.1 mmol) in Et_2O (5 mL) was added and stirring was continued at this temperature for 2 hours. The reaction mixture was then cooled to -78° and LiBH₄ (19.2 mL, 2 M solution in THF, 38 mmol)

was added. After 2 hours, the reaction mixture was partitioned between $Et_2O(3 \times 100 \text{ mL})$ and sat. aq. NH₄Cl (60 mL), the organic extracts were combined and washed with brine, then concentrated in vacuo to give an oil. Purification by flash chromatography (CH₂Cl₂) gave the semipure boronate (4.3 g). This residue was suspended in cold (0°) MeOH (30 mL) and 10% aq. NaOH (10 mL) and 30% aq. H₂O₂ (15 mL) were added and stirring was continued at room temperature for 2 hours. The resulting mixture was then poured into water (150 mL) and extracted with CH₂Cl₂(3 × 150 mL). The combined organic extracts were washed with sat. aq. NaHCO₃ (50 mL), sat. aq. NaHSO₃ (50 mL), and brine (50 mL), then dried (MgSO₄) and concentrated in vacuo to give a yellow oil. Purification by flash chromatography (10% $Et_2O/$ CH₂Cl₂) gave the title compound (1.85 g, 81%) as a colorless solid, mp 64–65°

(pentane). [\alpha]_D^{20} + 15.6 (c 1.4, CHCl_3). IR (CHCl_3) 3440, 2970, 2930, 2870 cm^{-1}.

¹H NMR ($CDCI_3$) δ 7.37 – 7.27 (m, 5 H), 5.33 (t, J = 6.9 Hz, 1 H), 4.52 (s, 2 H), 4.16 (s, 1 H), 4.08 (s, 1 H), 3.90 (d, J = 9.2 Hz, 1 H), 3.84 (d, J = 9.2 Hz, 1 H), 3.60 – 3.55 (m, 2 H), 2.02 (qd, J = 7.5, 6.9 Hz, 2 H), 1.97 – 1.92 (m, 1 H), 1.79 – 1.72 (m, 1 H), 1.60 (s, 3 H), 0.99 (d, J = 7.0 Hz, 3 H), 0.95 (t, J = 7.5 Hz, 3 H), 0.59 (d, J = 6.8 Hz, 3 H).

7.1.17. (4S,5S)-5-Hydroxy-4,6-dimethyl-6-hepten-3-one (Aldol Reaction of an Achiral Ketone with an Achiral Aldehyde Using a Chiral Boron Reagent) (121)

A freshly prepared stock solution (see above) of (–)-lpc₂BOTf (2.05 mL, 3.9 mmol, ca. 1.9 M in hexane) was diluted with CH₂Cl₂ (16 mL) and cooled to -78° . Disopropylethylamine (1.04 mL, 6.0 mmol) was added, followed by diethyl ketone (300 µL, 3.0 mmol). After 3 hours, freshly distilled methacrolein (330 µL, 4 mmol) was added and stirring was continued at -78° for 1 hour and then the reaction was transferred to the refrigerator (–15°) for 12 hours. The reaction mixture was then partitioned between Et₂O(3 × 20 mL) and pH 7 buffer (20 mL). The combined organic extracts were concentrated in vacuo, then dissolved in methanol (15 mL), and pH 7 buffer (3 mL) and 30% aq. H₂O₂ (4 mL) were added and stirring was continued at 0° for 1 hour. The reaction mixture was then poured into water and extracted with CH₂Cl₂(3 × 30 mL). The combined organic extracts were washed with sat. aq. NaHCO₃ and brine, then dried (MgSO₄) and concentrated in vacuo. The resulting oil was purified by

flash chromatography (10% Et_2O/ CH_2Cl_2) to afford the title compound (365 mg, 78%) as a colorless oil. The syn/anti ratio was determined by 400-MHz ¹H NMR analysis to be 98:2 and a chiral shift experiment indicated

91% ee. $[\alpha]_{D}^{20} - 33.8(c \ 3.7, CHCl_3)$. IR (thin film) 3460, 1700, 1650 cm⁻¹. ¹H NMR (CDCl₃) δ 5.04 (m, 1 H), 4.92 (m, 1 H), 4.37 (d, J = 3.6 Hz, 1 H), 2.72 (qd, J = 7.2, 3.6 Hz, 1 H), 2.57 (dq, J = 18.1, 7.3 Hz, 1 H), 2.49 (dq, J = 18.1, 7.3 Hz, 1 H), 1.68 (s, 3 H), 1.06 (d, J = 7.2 Hz, 3 H), 1.04 (t, J = 7.3 Hz, 3 H).

7.1.18. tert-Butyl (2S,3S)-(–)-2-Bromo-3-hydroxy-4-methylpentanoate (Aldol Reaction of an Achiral Ester with an Achiral Aldehyde Using a Chiral Boron Reagent) (167)

(R,R)-Bis[3,5-di(trifluoromethyl)benzenesulfonyl]-1,2-diamino-1,2-diphenyleth ane (10.0 g, 13.1 mmol) was heated at 65° under reduced pressure (ca. 1 mm Hg) and the flask was then filled with nitrogen and cooled to 23°. Anhydrous CH_2Cl_2 (150 mL) was added and the resulting solution was cooled to -78° , then treated with BBr₃ (10 mL of a 2.0 M sol. in CH₂Cl₂, 20 mmol). The reaction mixture was slowly returned to ambient temperature and stirred for 18 hours. The solvent was removed in vacuo while maintaining an anhydrous atmosphere, then CH₂Cl₂ (30 mL) was added and the solvent was removed as before. High vacuum was then applied (ca 1 mm Hg) for 10 minutes while heating at 40° and then the flask was opened to nitrogen, then replaced under vacuum, and this cycle was repeated five times. Toluene (300 mL) was added and the resulting mixture was warmed until a solution resulted, which was then cooled to -78°, and Et₃N (2.01 mL, 14.4 mmol) was added dropwise and the mixture was stirred at -78° for 5 minutes. *tert*-Butyl bromoacetate (2.01 mL, 12.4 mmol) was added and the mixture was stirred at -78° for 5 hours, after which a solution of isobutyraldehyde (1.01 mL, 11.8 mmol) in toluene (13 mL) was added and stirring was continued for 5 hours. While the mixture was held at -78° , methanol (5 mL) was added to guench the reaction, which was then diluted with Et₂O (300 mL). The organic layer was washed with brine (150 mL), dried ($MgSO_4$), and concentrated in vacuo, after which the crude product was treated with CH_2Cl_2 (5 mL) and hexanes (100 mL). After the mixture was stirred at room temperature for 1 hour, the white precipitate was filtered and washed with hexanes (100 mL) to afford recovered diamine (8.9 g, 89%

recovery). The filtrate was evaporated and the residue was purified by column chromatography (20% Et₂O/hexanes) to yield the title compound (2.83 g, 90%).

Analysis indicated anti:syn = 98:2, 92% ee for anti). $\left[\alpha\right]_{D}^{20} - 10.9(c 2.62, CHCl_3)$.

¹H NMR (CDCl₃) δ 4.12 (d, *J* = 7.9, 1 H), 3.78 (m, 1 H), 2.66 (d, *J* = 6.6 Hz, 1 H), 2.13 – 2.07 (m, 1 H), 1.50 (s, 9 H), 1.01 (d, *J* = 6.8 Hz, 3 H), 0.92 (d, *J* = 6.8 Hz, 3 H).

7.1.19. tert-Butyl

(3R,4S)-4-[N,N]-Dibenzylamino-3-hydroxy-5-phenylpentanthioate (Aldol Reaction of an Achiral Thioester with a Chiral Aldehyde Using a Chiral Boron Reagent) (165)

To a cooled solution of *tert*-butyl thioacetate (31 mg, 0.23 mmol) in Et₂O(950 µL) was added a solution of [(–)-(Menth)CH₂]₂BBr (880 µL of a 0.4 M solution in CH₂Cl₂, 0.34 mmol) followed by Et₃N (52 µL, 0.37 mmol). The reaction mixture was stirred at 10° for 2.5 hours, then cooled to –78° and dibenzyl phenylalaninal (99 mg, 0.30 mmol) was added dropwise and stirring was continued for a further 18 hours. The reaction was quenched by addition of pH 7 buffer (1 mL) and then the solvent was removed in vacuo. The residue was dissolved in methanol (5 mL) then treated with pH 7 buffer (1 mL) and 30% aq. H₂O₂ (1 mL) and stirred at room temperature for 45 minutes. The reaction mixture was concentrated in vacuo, then extracted twice with CH₂Cl₂. The organic extracts were washed with water then brine, dried (Na₂SO₄), and concentrated under reduced pressure. Column chromatography (15% EtOAc/hexanes) afforded the title compound (79 mg, 75%) as a colorless oil.

 $[\alpha]^{20}_{365(\text{Hg})} = 84.6$ (c 1.42, CHCl₃). ¹H NMR (CDCl₃) δ 7.40 – 7.10 (m, 15 H),

4.40 – 4.25 (m, 1 H), 3.78 – 3.58 (2 × ABq,*J* = 13.8 Hz, 4 H), 3.20 – 2.70 (m, 5 H), 2.45 – 2.30 (m, 1 H), 1.48 (s, 9 H).

7.1.20. (2R,5S)-1-Benzyloxy-5-hydroxy-2,6-dimethylheptan-3-one (Double Stereodifferentiating Aldol Reaction between a Chiral Ketone, an Achiral Aldehyde, and a Chiral Boron Reagent) (151)

To a cooled (0°) solution of (+)-lpc₂BCI (2.07 g, 6.45 mmol) in anhydrous Et₂O (25 mL) was added Et₃N (0.90 mL, 6.45 mmol) followed by a solution of (*R*)-1-benzyloxy-2-methylbutan-3-one (0.793 g, 4.1 mmol) in Et₂O (15 mL). The white suspension was stirred for 3 hours at 0° before cooling to -78° , and isobutyraldehyde (1.24 g, 17.2 mmol) was added dropwise. The reaction mixture was allowed to warm to -50° over 2 hours and then stirred at 0° for 1 hour. The reaction was quenched by sequential addition of methanol (140 mL), pH 7 buffer (56 mL), and 30% aq. H₂O₂ (14 mL) and the biphasic system was stirred vigorously at 0° for 10 minutes and then at room temperature for 1 hour. The mixture was poured into water (100 mL) and extracted with EtOAc/hexanes (1:1 v/v) (5 × 100 mL). The combined organic extracts were washed with H₂O (100 mL), dried (MgSO₄), and concentrated in vacuo. The resulting oil was subjected to column chromatography (EtOAc/hexanes, 15:85) to afford the title compound (980 mg, 91%) as a colorless oil. ¹H NMR analysis

(500 MHz) indicated a diastereoselectivity of 95:5. $[\alpha]_D^{20} - 50.4(c \ 0.27, CHCl_3)$.

IR 3462, 1707 cm⁻¹. ¹H NMR (CDCl₃) δ 7.25–7.36 (m, 5 H), 4.50 (d, *J* = 12 Hz, 1 H), 4.46 (d, *J* = 12 Hz, 1 H), 3.82 (ddd, *J* = 9.7, 5.8, 2.2 Hz, 1 H), 3.57 (dd, *J* = 8.8, 8.4 Hz, 1 H), 3.48 (dd, *J* = 8.8, 4.2 Hz, 1 H), 2.92 (m, 1 H) 2.68 (dd, *J* = 17.4, 9.8, 1 H), 2.54 (dd, *J* = 17.4, 2.3 Hz, 1 H), 1.67 (m, 1 H), 1.06 (d, *J* = 7 Hz, 3 H), 0.91 (d, *J* = 6.8 Hz, 3 H), 0.89 (d, *J* = 6.8 Hz, 3 H).

7.1.21. (2S,4S,5R,6E)-1-Benzyloxy-5-hydroxy-2,4-dimethyl-6-octen-3-one (Double Stereodifferentiating Aldol Reaction between a Chiral Ketone, an Achiral Aldehyde, and a Chiral Boron Reagent) (119, 122, 278)

To a stirred solution of (–)-lpc₂BOTf (1.09 mL, 0.65 mmol, ~0.6 M in hexane) in CH_2Cl_2 (2 mL) at room temperature was added *i*-Pr₂NEt (228 µL, 1.31 mmol) followed by the ketone (90 mg, 0.44 mmol) in CH_2Cl_2 (2 mL). After 3 hours at room temperature, the reaction mixture was cooled to 0° and freshly distilled crotonaldehyde (108 µL, 1.31 mmol) was added. After stirring at 0° for 1 hour, the reaction mixture was transferred to the refrigerator (–4°) for 16 hours, then partitioned between $Et_2O(3 \times 20 \text{ mL})$ and pH 7 buffer (20 mL) and the combined organic extracts were concentrated in vacuo. The residue was

resuspended in methanol (4 mL) and pH 7 buffer (1 mL) and cooled to 0° C, then 30% aq. H_2O_2 (2 mL) was added dropwise and stirring was continued at room temperature for 1 hour. The mixture was then poured into water (20 mL) and extracted with $CH_2Cl_2(3 \times 20 \text{ mL})$. The combined organic extracts were washed in turn with 5% aq. NaHCO₃ (15 mL) and brine (10 mL), dried (MgSO₄), and concentrated in vacuo to afford a yellow oil. Flash chromatography (10% Et₂O/ CH₂Cl₂) allowed separation of the aldol products from isopinocampheol; HPLC purification (10% Et₂O/ CH₂Cl₂) provided minor

aldol products (11 mg, 8%) along with the title compound (78.1 mg, 65%). $[\alpha]_D^{20}$

+ 26.2 (*c* 5.0, CHCl₃). IR (thin film) 3450, 1690, 1600 cm⁻¹. ¹H NMR (CDCl₃) δ 7.36 – 7.23 (m, 5 H), 5.68 (dqd, *J* = 15.3, 6.3, 1.1 Hz, 1 H), 5.44 (ddq, *J* = 15.3, 6.2, 1.3 Hz, 1 H), 4.47 (ABq, *J* = 12.1 Hz, 2 H), 4.33 (ddd, *J* = 6.2, 4.0, 1.1 Hz, 1 H), 3.64 (app. t, *J* = 8.7 Hz, 1 H), 3.43 (dd, *J* = 8.7, 5.2 Hz, 1 H), 3.08 (dqd, *J* = 8.7, 7.1, 5.2 Hz, 1 H), 2.78 (qd, *J* = 7.1, 4.0 Hz, 1 H), 1.68 (dd, *J* = 6.3, 1.3 Hz, 3 H), 1.12 (d, *J* = 7.1 Hz, 3 H), 1.04 (d, *J* = 7.1 Hz, 3 H).

8. Tabular Survey

An effort has been made to tabulate all reported examples of asymmetric boron-mediated aldol reactions from mid-1981 until the end of 1995. Tables I–IIIB are listed in order of increasing carbon count of the enolate precursor and then the aldehyde. Tables IVA–VB are arranged in order of increasing carbon count of the chiral ligands, enolate precursor, and aldehyde. Table VI lists the reported examples of chiral boron enolates adding to ketones. Protecting groups are not included in the carbon count. When two compounds have the same carbon count, the compounds are ordered by increasing hydrogen number.

Isolated yields of the combined aldol products are included in parentheses and a dash indicates that no yield was reported. Where an enantiomeric excess is reported, it relates to the major product of a reaction. The solvent used in the reaction is dichloromethane unless otherwise indicated.

The following abbreviations have been used in the tables:

Bn	benzyl
Boc	tert-butoxycarbonyl
BOM	benzyloxymethyl
Bz	benzoyl
C₅H ₉	cyclopentyl
C_6H_{11}	cyclohexyl
Cbz	benzyloxycarbonyl
DEIPS	diethylisopropylsilyl
DMIPS	dimethylisopropylsilyl
LDA	lithium diisopropylamide
MEM	methoxyethoxymethyl
MOM	methoxymethyl
Np	2-naphthyl
PMB	<i>p</i> -methoxybenzyl
PMP	<i>p</i> -methoxyphenyl
TBS	tert-butyldimethylsilyl
TBDPS	tert-butyldiphenylsilyl
TCE	2,2,2-trichloroethyl
TES	triethylsilyl
TFA	trifluoroacetic acid

THP	2-tetrahydropyranyl
TIPS	triisopropylsilyl
TMS	trimethylsilyl
Ts	<i>p</i> -toluenesulfonyl

Table I. Achiral Enolates with Chiral Aldehydes

View PDF

Table IIA. Chiral Enolates (Auxiliary Control) with Achiral Aldehydes

View PDF

Table IIB. Chiral Enolates (Auxiliary Control) with Chiral Aldehydes

View PDF

Table IIIA. Chiral Enolates (Substrate Control) with Achiral Aldehydes

View PDF

Table IIIB. Chiral Enolates (Substrate Control) with Chiral Aldehydes

View PDF

Table IVA. Chiral Enolates (Ligand Control) with Achiral Aldehydes

View PDF

Table IVB. Chiral Enolates (Ligand Control) with Chiral Aldehydes

View PDF

Table VA. Chiral Enolates (Ligand and Substrate Control) with AchiralAldehydes

View PDF

Table VB. Chiral Enolates (Ligand and Substrate Control) with ChiralAldehydes

View PDF

Table VI. Chiral Enolates (Auxiliary Control) with Ketones

View PDF

TABLE I. ACHIRAL ENOLATES WITH CHIRAL ALDEHYDES

 TABLE I. ACHIRAL ENOLATES WITH CHIRAL ALDEHYDES (Continued)

TABLE I. ACHIRAL ENOLATES WITH CHIRAL ALDEHYDES (Continued)

TABLE I. ACHIRAL ENOLATES WITH CHIRAL ALDEHYDES (Continued)

TABLE I. ACHIRAL ENOLATES WITH CHIRAL ALDEHYDES (Continued)

Enolate	Precursor Reaction Condition	ns Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
C9 PhS	BCl, <i>i</i> -Pr ₂ NEt	о н овом	PhS O OH I + PhS O OH I H O OH I H OBOM O OH I II O OBOM OBOM OBOM OBOM OBOM OBOM OBOM OB	31
	OBCI, <i>i</i> -Pr ₂ NEt	H O	$PhS \rightarrow OH \qquad OH$	31
			$(50-60) I:II = 88:12^{d}$	
	9-BBNOTf, <i>i</i> -Pr ₂ NEt	$H \xrightarrow{O} R$ NBn_2	PhS O OH $R = Me, () > 97:3$ R = Bn, () > 97:3 R = bn, () > 97:3 $R = i \cdot Pr, () 76:24$ $R = i \cdot Bu, () 76:24$	30 [¢]
	$\bigcup_{0}^{0} BCl, i-Pr_2NEt$	H OBn racemic	O OH PbS OBn (50-60) 55:45*	31
	9-BBNOTf, i-Pr2NE Et2O		PhS OH O (69)	283, 284
	1. $\bigcirc O$ BCl, <i>i</i> -Pr ₂ N O 2. CF ₃ CO ₂ H	Et H CO_2Me racemic	$PhS \qquad I \qquad H \qquad S \qquad S$	31 0 ^d
	OBCI, <i>i</i> -Pr ₂ NEt	$H \xrightarrow{O} Ph$ racemic	PhS \rightarrow	31
C ₁₂ PhS	O_{O} BCl, <i>i</i> -Pr ₂ NEt	н	PhS O OH	31
			$(50-60)$ 1:11 = $70:30^{f}$	

TABLE I. ACHIRAL ENOLATES WITH CHIRAL ALDEHYDES (Continued)

^{*a*} The products shown in this equation are not the actual isolated products. Compounds I and IV cyclized to δ-lactones, while compounds II and III were transesterified to *n*-butyl esters.

- ^b The amine base used in this reaction was not specified.
- ^c The aldehyde used in this reaction was racemic.
- ^d The syn:anti ratios ranged from 20:1 to 30:1.
- ^e The structure of the minor isomer was not assigned.
- ^f The syn:anti ratios were 30:1.
- ^g For a related reaction, see reference 401.

Enolate Precursor	Reaction Conditions	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
C ₄ BzO OBn	$(C_6H_{11})_2BCI,$ Me_2NEt, Et_2O	H H	ВzO	110
C ₅ O BzO	$(C_6H_{11})_2BCI,$ Me_2NEt, Et_2O		BzO OH $R = Et, (93) > 99:1$ $R = C(Me)=CH_2, (97) 98:2$ R = i-Pr, (95) 97:3 R = Ph, (85) > 99:1	110 110 110, 36 110
0	$(C_6H_{11})_2BCI,$ Me_2NEt, Et_2O	H R	BzO OH R = H, (95) 93:7 R = Me, (86) >99:1	285 118
BnO	$(C_6H_{11})_2BCl,$ Et ₃ N, Et ₂ O		$\begin{array}{ccc} O & OH & R = i-Pr, (81) 92:8 \\ BnO & R & R = Pr, (89) 90:10 \\ R & R = C(Me)=CH_2, (87) 90:10 \\ R = C(E_1)=CH_2, (87) $	110 110 110
	1. (C ₆ H ₁₁) ₂ BCl, Et ₃ N, Et ₂ O 2. RMgBr	H H	$R = C(E) = CH_2, (83) 90:10$ $R = Me, (80) 90:10$ $R = CH_2 = C(Me), (66) 90:10$	117
	1. (C ₆ H ₁₁) ₂ BCl, Et ₃ N, Et ₂ O 2. EtMgBr	H H	HO OH (92) 90:10	117
C ₆ BzO	$(C_6H_{11})_2BCl,$ Me ₂ NEt, Et ₂ O	H H	BzO OH (95) 93:7	110
C ₈ X CO ₂ Me	Bu2BOTf, i-Pr2NEt		$X = \begin{bmatrix} S & O & OH \\ N & R \end{bmatrix} = \begin{bmatrix} X & R \\ S & i-Pr \\ R \\ O & i-Pr \\ O & i-Pr \\ O & Ph \\ (89) \end{bmatrix}$	76
O CO ₂ Me	Bu2BOTf, i-Pr2NEt		$O = \begin{bmatrix} S & O & OH \\ N & R & R = i - Pr, (83) \\ CO_2 Me & R = Ph, (78) \end{bmatrix}$	76, 87-89 76
		H R	O O OH OH R	
PT-1	Bu2BOTf, i-Pr2NEt Bu2BOTf, i-Pr2NEt Bu2BOTf, i-Pr2NEt Et2BOTf, i-Pr2NEt		$R = i \cdot Pr, (51), >98:2$ $R = i \cdot Bu, (48), >98:2$ $R = n \cdot C_{5}H_{11}, (62) > 98:2$ R = Ph, (63) 98:2	59, 60 60 60 286, 287
	Bu2BOTf, i-Pr2NEt	H C C C C C C C C C C C C C C C C C C C	0 0 0H 0 N Br Pr- <i>i</i> Ph	286, 287
	Bu2BOTf, Et3N	Рп Н С ₁₃ Н ₂₇ -л	$O O OH$ $O O OH$ $C_{13}H_{27}-n (77) 94:6$ $Pr-i$	288

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

Enolate Precursor	Reaction Conditions	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
Pr-i	Bu2BOTf, i-Pr2NEt Bu2BOTf, i-Pr2NEt		Pr- <i>i</i> R = Me, () $R = CH=CH_2, (98) > 98:2$	143 102,292, 293
	Bu2BOTf, i-Pr2NEt Bu2BOTf, Et3N Bu2BOTf, i-Pr2NEt Bu2BOTf, i-Pr2NEt Bu2BOTf, i-Pr2NEt		$R = CH_2NHBOC, (83)$ R = Et, (84) $R = i \cdot Pr, (78) 99.8:0.2$ $R = n \cdot Bu, (75) > 99:1$ R = Ph, (88) > 99.8:0.2	50 258,294 41,43,295 41 41,44,
	1. Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt 2. Aldehyde, Et ₂ AICl	H R	$\begin{array}{c} 0 & 0 & 0H \\ \hline 0 & 0 & 0H \\ \hline 0 & -R & I + 0 & -R & II \\ \hline 0 & -R & -R & II \\ \hline 0 & -R & -R & II \\ \hline 0 & -R & -R & -R & II \\ \hline 0 & -R & -R & -R & -R & II \\ \hline 0 & -R & -R & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R & -R \\ \hline 0 & -R & -R & -R \\ \hline 0 & -R $	71,82
	 Bu₂BOTf, <i>i</i>-Pr₂NEt Aldehyde, additive 	H H	$I + II, R = i-Pr$ <u>Additive</u> $TiCl_4 (2 eq), (83) I:II = 16:84$ SnCl_4 (0.5 eq), (51) I:II = 95:5 SnCl_4 (2 eq), (60) I:II = 13:87 Et_2AlCl (2 eq), (63) I:II = 95:5	103
	Bu ₂ BOTf (1.9 eq)	H SR	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	102
	<i>i</i> -Pr ₂ NEt (2.2 eq) <i>i</i> -Pr ₂ NEt (2.2 eq) <i>i</i> -Pr ₂ NEt (2.2 eq) Et ₃ N (2.4 eq) <i>i</i> -Pr ₂ NEt (2.2 eq) Et ₃ N (2.4 eq) <i>i</i> -Pr ₂ NEt (2.2 eq) Et ₃ N (2.4 eq) Et ₃ N (2.4 eq)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Bu2BOTf, Et3N		$\begin{array}{c} 0 & 0 & 0H \\ 0 & 0 & 0H \\ 0 & 0 & R \\ 0 & 0 & 0H \\ 0 & 0 & R \\ R = CF_3, (62) I:II:III = 85:15:- \\ R = CF_3/TICI_4, (83) I:II:III = 44:33 \\ R = CO_{2Et}, (50) I:II:III = 544:33 \\ R = COPh, (55) I:II:III = 544:33 \\ R = COPh, (55) I:II:III = 544:33 \\ R = COPh, (55) I:IIIII = 544:34 \\ R = COPh, (55) I:IIII = 54$	
			Pr - <i>i</i> III $R = CF_2(CH_2)_3Ph$, (33) I:II:III	= 82:12:6

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

Enolate Precursor	Reaction Conditions	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
	1. Bu ₂ BOTf, <i>i</i> -Pr ₃ NEt 2. Aldehyde, TiCl ₄ (2 eq)	H R	$\begin{array}{c} 0 & 0 & 0H \\ 0 & 0H$	103
TBSO	i-Pr ₂ NEt	H R	TBSO C_6H_{11} R	
	(C ₅ H ₉) ₂ BOTf (C ₅ H ₉) ₂ BOTf 9-BBNOTf Bu ₂ BOTf Bu ₂ BOTf Bu ₂ BOTf Bu ₂ BOTf 9-BBNOTf (C ₅ H ₉) ₂ BOTf		$R = H, (90) > 99:1$ $R = Et, (70-85) > 99:1$ $R = (CH_2)_2OBn, (70-85) > 99:1$ $R = (CH_2)_2OBn, () 94:6$ $R = (CH_2)_2OBn, () 94:6$ $R = C(Mc)=CH_2, (85) > 96:4$ $R = i-Pr, (70-85) > 99:1$ $R = i-Pr, () > 99:1$ $R = Ph, (70-85) > 98:2$	112 108 108, 114 304 304 115 108 304 108
	(C3H9)2BOTf, i-Pr2NEt	H R	TBSO, $C_{6}H_{11}$ $R = H, (90) > 99:1$ R = Et, (85) 99:1	112 116
N N	Bu ₂ BOTf, i-Pr ₂ NEt	H Ph	0 0 OH N Ph (84) >97:3	77
	Et ₂ BOTf, <i>i</i> -Pr ₂ NEt		$\begin{array}{cccc} O_2 & O & OH \\ S & & R = Me, (71) > 99:1 \\ R = Et, (85) \\ R = i \cdot Pr, (95) > 99:1 \\ R = i \cdot Bu, (78) > 99:1 \\ R = Ph, (84) > 99:1 \end{array}$	97 98 97 97 97
	Bu ₂ BOTf ^c	H Ph	$ \begin{array}{c} $	85
	Bu ₂ BOTf ^c	H Ph	MeN NMe OH OH (86) MeN N N N N N N N N N	85
TBSO	(C₃H₃)₂BOTf, i-Pr₂NEt	O H ∕ R	R = Me, (70) 93:7 $R = Et. (78) 93:7$ $R = i-Pr, (21) > 98:2$ $R = Ph, (82) 93:7$	275

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

 $R = Et, (80) I:II = 90:10^{d}$ R = (E)-CH=CH(Me), (77) I:II = 88:12 $R = i-Pr, (81) I:II = 95:5^{d}$ $R = Ph, (75) I:II = 92:8^{d}$ $R = (E)-CH=CH(Ph), (78) I:II = 89:11^{d}$

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

Enclate Precursor	Reaction Conditions	Aldehude	Product(s) and Vield(s) (%) Diastereomer Patio	Refe
	Et ₂ BOTf, <i>i</i> -Pr ₂ NEt	H R	$R = (E)-CH=CHMe, (76) > 98:2$ $R = r, (64) > 98:2$ $R = r-Pr, (68) > 98:2$ $R = r-Bu, (36) > 98:2$ $R = Ph, (95) > 98:2$ $R = C_6H_{11}, (67) > 98:2$	79
$O_{\mathbf{Pr}\cdot i}^{\mathbf{O}} \overset{\mathbf{O}}{\underset{\mathbf{Pr}\cdot i}{\overset{\mathbf{O}}{\overset{\mathbf{O}}}}} \overset{\mathbf{O}}{\underset{\mathbf{C}_{4}\mathbf{H}_{9}\cdot n}{\overset{\mathbf{O}}{\overset{\mathcal{O}}{$	Bu2BOTf. <i>i-</i> Pr2NEt	H CF3	O O O O H O O O O O O O O O O O O O O O	107
	Bu ₂ BOTf, Et ₃ N	H R	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	80
S N CO ₂ Me	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt	H H	$S \xrightarrow{V} O OH (87)$	76
			O O O O O O O O O O O O O O O O O O O	
	Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, i -Pr ₂ NEt Bu ₂ BOTf, i -Pr ₂ NEt Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, Et ₃ N 9-BBNOTf, i -Pr ₂ NEt Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, Et ₃ N		$R = CH_2OBn, (74) 98:2$ R = Me, (85) $R = CH=CH_2, (83)$ R = Et, (91) $R = i \cdot Pr, (83) > 99:1$ $R = (CH_2)_3OTBS, (70) > 99:1$ $R = (CH_2)_2CH=CH_2, (90)$ $R = (CH_2)_4OBn, (84) 97:3$ R = Ph, (93) > 97:3 R = (E)-CH=CHPh, (93)	313 314, 31 239 316, 31 220 318 319 320 321 309
	Bu2BOTf, Et3N	H CF3	$ \begin{array}{c} 0 & 0 & OH \\ 0 & & & \\ 0 & & & \\ \end{array} $ $ \begin{array}{c} 0 & O & OH \\ 0 & & & \\ Bn & \\ I & (80) I:II = 78:22 \\ \end{array} $ $ \begin{array}{c} 0 & O & OH \\ 0 & & & \\ Bn & \\ I & \\ \end{array} $	107
	Bu2BOTf, <i>i</i> -Pr2NEt		O O OH OH OTBS (77) 88:12	322
	Bu2BOTf, Et3N	H H	O O OH O O OH Bn (>72)	323
	Bu ₂ BOTf, <i>i-</i> Pr ₂ NEt	H	O O O O O H $O O O O O H$ $O O O O O H$ $O O O O O O H$ $O O O O O O O O O H$ $O O O O O O O O O O O O O O O O O O O$	47

Enolate Precursor	Reaction Conditions	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt	H SPh () n	O O OHN (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	324, 300
	Bu ₂ BOTf, Et ₃ N	н ннвос	O O OH O N OH Bn (93) 88:12	298
O O Bn	Bu ₂ BOTf, Et ₃ N		O O OH $R = Et, (80) 98.5:1.5$ O N $R = (E)-CH=CHMe, (99) > 99:1$ Bn $R = i-Pr, (80)$	269, 325 274, 222 326, 327
O N Ph'			Ph O OH R	
	Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, Et ₃ N Bu ₂ BOTf, Et ₃ N		$R = Me, (93) > 98:2$ $R = CH_2OBn, (83) > 99:1$ $R = Et, (>80)$ $R = CH=CH_2, (80)$ $R = (CH_2)_2OBn, (85)$ $R = (CH_2)_2OPMB, (87)$ $R = (CH_2)_2OBz, ()$ $R = i - Pr, (91) > 99.8:0.2$ $R = Bu, (95) > 99.8:0.2$ $R = (E) - CH=CHEt, (92)$ $R = n - C_5H_{11}, (71) 98:2$ $R = Ph, (89) > 99.8:0.2$	328, 53 61 329 292, 330 331 61, 332 35 41,333,334 41 61 335 41, 48
	Bu₃BOTf. Et₃N	H H	R = (E)-CH=CHPh. (70) >95:5	185, 186
	 Bu₂BOTf (1.1 eq), <i>i</i>-Pr₂NE MeCHO, Et₂AlCl Bu₂BOTf (2.0 eq), <i>i</i>-Pr₂NE MeCHO 	ît Ît	(84) I:II = 71:29 (90) I:II = 88:12	
		H R		
	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt 9-BBNOTf, <i>i</i> -Pr ₂ NEt Bu ₂ BOTf, Et ₃ N		R = H, (80) R = I, (65) R = Me, (85)	336 184, 181 337, 338
	Bu ₂ BOTf, Et ₃ N		O = O = O = O = O = O = O = O = O = O =	45, 46 339, 258
	Bu2BOTf, Et3N		O OH CI CI ON (92) Ph	335

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

Enolate Precursor	Reaction Conditions	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
	Bu2BOTf, Et3N	Н	0 0 OH 0 N (51)>99:1	80
O Ph	Bu2BOTf, Et3N		$\begin{array}{c} O \\ O \\ O \\ Ph' \end{array} \xrightarrow{O} O \\ N \\ Ph' \\ \end{array} \xrightarrow{O} O \\ N \\ R \\ R = Et, (93) > 98:2 \\ R = i \cdot Pr, (93) > 98:2 \\ R = Ph, (88) > 98:2 \end{array}$	51
Ph ^O	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt	н	O OH OHOMOM (83)	263
	Bu2BOTf, Et3N	H R	$MeN \xrightarrow{N} Ph \xrightarrow{O} OH \\ R = H, (88) 98:2 \\ R = OMe, (92) 96:4 \\ R = NO_2, (85) 96:4$	344, 345 ^r
	l. Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt 2. Aldehyde, THF	H R	$\begin{array}{c} 0 & 0 & 0H \\ 0 & N & R & R = i-Pr, (86) > 99:1 \\ R = Ph, (52) > 99:1 \\ \end{array}$	346
	Bu2BOTf, i-Pr2NEt	H Ph	О О ОН О N Ph () 95:5	78
N S O ₂			N C R R C R R C R R C R R R C R	95, 96
	Et ₂ BOTf, i-Pr ₂ NEt Bu ₂ BOTf, i-Pr ₂ NEt Bu ₂ BOTf, i-Pr ₂ NEt		R = Me, (87) 96:4 $R = i \cdot Pr, (80) 99:1$ R = Ph, (70) 97.5:2.5	
	Bu2BOTf, Et3N		$MeN \xrightarrow{V}_{C_6H_{11}} O \xrightarrow{OH}_{R} R = Me, (80) 96:4$ $R = i-Pr, (82) >99:1$ $R = Ph, (75) 98:2$ $R = C_6H_{11}, (92) >99:1$	347, 345
C ₁₅ O Ph' CF ₃	Bu2BOTf, Et3N	H OMe	O O OH OH OH OH OH OH O	348
Ph	Bu ₂ BOTf, Et ₃ N	O OMe	$O O OH OH OH CF_3 OMe (77)$	348

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

Enolate Precursor	Reaction Conditions	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt	$\overset{O}{_{H}}{_{C_{13}H_{27}}}n$	$O O O O H C_{13}H_{27} n (82)$	351
	Bu ₂ BOTf, i-Pr ₂ NEt	H R	$ \begin{array}{c} 0 & 0 & 0H \\ 0 & & & R & R = n \cdot C_{5}H_{11}, (84) > 98:2 \\ & & & R = Ph, (83) > 99:1 \\ \end{array} $	352
	Bu2BOTf, i-Pr2NEt	H O	Ph Ph Ph Ph Ph Ph Ph Ph	352
O N Bn Ph	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt	H C6H11	$O \qquad OH \qquad C_0H_{11} \qquad (84) >90:10$	353
MeN N Ph Ph	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt		$MeN \xrightarrow{N} Ph \xrightarrow{Ph} Ph \qquad R = Me, (48) > 99:1$ $R = CH=CH_2, (23) > 99:1$ $R = Et, (38) > 99:1$ $R = Ph, (66) > 99:1$ $R = 2-naphthyl, (72) > 99:1$	354
C20 O N Ph	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt	о н Н Н	$O \to O \to OH$ $O \to Ph$ (75)	355
	Bu ₂ BOTf. <i>N</i> -ethylpiperidine	H Ph	$Ph \xrightarrow{OH} O O O OH Ph (72)$	82
		H R	O OH R I +	92
	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt 1. Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt 2. Aldehyde, TiCl ₄ Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt 1. Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt		$R = i \cdot Pr, (93) I:II = 90:10$ $R = i \cdot Pr, (56) I:II = 93:7$ $R = Ph, (93) I:II = 86:14$ $R = Ph, (69) I:II = 23:77$	

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

TABLE IIA. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

^a Concomitant loss of the trimethylsilyl group occurred upon workup.

^b This reaction was repeated several times varying the amounts of Bu₂BOTf and base and also in solvents other than CH₂Cl₂.

 $^{c}\,$ No base was required in this reaction.

^d This reaction was performed on racemic enolate precursor.

" "Mono" adducts of this bifunctional reagent were also obtained with other aldehydes.

f Reactions of this auxiliary with five nonaromatic aldehydes were also performed, but selectivity was poor.

TABLE IIB. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH CHIRAL ALDEHYDES

TABLE IIB. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH CHIRAL ALDEHYDES (Continu	ued)
---	------

TABLE IIB. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TABLE IIB. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TABLE IIB. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TARI E IIR	CHIRAL ENOLATES	(AUXILIARY	CONTROL	WITH CHIRAL	AI DEHYDES	(Continued)
IADLL IID.	. CHIRAL LIYOLATES	(AUXILIAN I	CONTROL	WITH CHIKAL	ALDEITDES	(Commueu)

Enolate Precursor	Reaction Conditions	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
	Bu2BOTf, Et3N	н ормв	OPMB (100) >99:1	274
	Bu2BOTf, Et3N	H O OTBS	Bn OTBS (>63)	370
	Bu2BOTf, Et3N	H OBn	O OH ON OBn (>85)	371
	Bu2BOTf, <i>i</i> -Pr2NEt		Ph S S (92)	372
O N Ph		о н ормв	O OH O OH OPMB (54)	373
	Bu2BOTf, <i>i</i> -Pr2NEt	H H	0 0 OH 0 0 N 0 (72) 92:8 Ph	374
	Bu2BOTf, i-Pr2NEt		$\begin{array}{c} O \\ O \\ O \\ O \\ Ph' \end{array} \begin{array}{c} O \\ N \\ R = Me, (63) \\ R = Et, (63) \end{array}$	375
	Bu2BOTf, Et3N		$\begin{array}{c} 0 & O \\ 0 & N \\ 0 & N \\ 0 & R = H, (100) > 99:1 \\ R = Me, (96) > 99:1 \\ \end{array}$	48
			O O OH R O N N N I +	
	Bu ₂ BOTf (1.1 eq), Et ₃	N (1.3 eq)	R = BOC, (92) I:II = >99:1	48,376, 377
	Bu ₂ BOTf (1.5 eq), Et ₃	N (1.4 eq)	R = BOC, (83) 1:11 = 5:95	48,376, 377
	Bu ₂ BOTf (1.0 eq), Et ₃ Bu ₂ BOTf (1.5 eq), Et ₃	N (1.1 eq) N (1.4 eq)	R = Cbz, (82) I :II = >99:1 R = Cbz, (74) I :II = 2:98	48 48
	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt		O O OH I + Ph OBn $(-)$ I :II = 83:17 ^a	358

TABLE IIB. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH CHIRAL ALDEHYDES (Continued)

Enolate Precursor	Reaction Conditions	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
	Bu ₂ BOTf, i-Pr ₂ NEt	H H	O N N N N N N N N N N N N N	295
	Bu2BOTf, Et3N		O O N NHBOC (100) >99.1	48
	Bu ₂ BOTf, <i>i</i> -Pr ₂ NEt	H H	O O OH N (86) 99.8:0.2 Ph'	27, 359
	Bu2BOTf, Et3N			258
	Bu2BOTf, Et3N		Ph' (>82)	46
	Bu2BOTf, <i>i</i> -Pr2NEt		Ph' O OH O $OMePh'$ O $OMePMP'$ O (88)	212
	Bu2BOTf, Et3N		O O OH OMe Ph (77) >95:5	185, 186
	Bu2BOTf, Et3N	н		309
		O OBn	O OBn	
	Bu2BOTf, Et3N	н ормв	OTIPS S OMe OMe	193
			OH OPMB OTIPS S OME OME (87)	
	Bu2BOTf. <i>i-</i> Pr2NEt	Aco H H H H H H H H H H H H	$\begin{array}{c} O & O & OH \\ O & N & H \\ Ph & AcO & H \\ H & H \\ AcO & H & OAc \end{array} $ (94) 91:9	361

TABLE IIB. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TABLE IIB. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TABLE IIB. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TABLE IIB. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH CHIRAL ALDEHYDES (Continued)

 a The major product from this reaction is not the anticipated result.

	Enolate Precursor	Reaction Conditions	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
C ₅ Bi	no OBn	(C ₆ H ₁₁) ₂ BCl, H Et ₃ N, Et ₂ O	R R	BnO H BnO R $R = i-Pr, (95) 95:5R = C(Me)=CH_2, (88) 95:5$	128
B	no	H_	O R	BnO I R $+$ $BnO $ R R R R R R R R R	120
		Bu2BOTf, i-Pr2NEt		$R = C(Me) = CH_2$, (45) I:II = 84:16	
		(C ₆ H ₁₁) ₂ BOTf, <i>i</i> -Pr ₂ NEt		$R = C(Me) = CH_2$, (40) $I:II = 86:14$	
c		$(C_6H_{11})_2BCI, Et_3N, Et_2O$		R = Pr, (84) I:II = 88:12	
M	OMO O OTBDPS	i-Pr ₂ NEt, TfOB H	OGBn	$\begin{array}{c} \text{MOMO} & \text{O} & \text{OH} \\ \hline & & \text{OBn} & \text{I} + \\ \text{TBDPSO} & (-) \text{I:II} = 52:48 \\ \hline & \text{MOMO} & \text{O} & \text{OH} \\ \hline & & \text{OBn} & \text{II} \end{array}$	159
				TBDPSO	
в	no	(C ₆ H ₁₁) ₂ BCl, H ⁻ Et ₃ N, Et ₂ O		BnO OH () 97:3	123
		1. $(C_6H_{11})_2BCl$, Et ₃ N, Et ₂ O H ⁻ 2. LiBH ₄		OH OH BnO (81) 96:4	123

TABLE IIIA. CHIRAL ENOLATES (SUBSTRATE CONTROL) WITH ACHIRAL ALDEHYDES

TABLE IIIA. CHIRAL ENOLATES (SUBSTRATE CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

Enolate Precursor	Reaction Conditions	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
TBSO OTMS		0 	TBSO O OH	
	9-BBNBr	Н	(66) 92:8	135
- TBSO OTMS		0	твѕо о он твѕо о он	
$\langle \cdot \rangle$	9-BBNBr	н		135
1		I		
TRSO		0	(68) I:II:3,4-anti = 89:3:8	
		H L		120
	Et_3N, Et_2O		(90) 94:0	129
TBSO O		0 	TBSO O OH	
	$(C_6H_{11})_2BCl,$ EtaN EtaO	Н	(75) 96:4	129
TBSO O	Lizer, L120	Q	твѕ <u>о</u> о он	
	9-BBNOTf, Et ₃ N	н	(87) 95:5	21, 26
11 🖬 1				
	(C.H)-BCl	нĂ		122
	Et_3N, Et_2O			132
			$\begin{array}{c} \text{TBSO} \text{O} \text{OH} (93) \text{ I: II} = 79:21^{17} \\ \hline \\ $	
			́ТТТ Т п	
\vee			X	
	Ľ	o ↓	O´ O OH ↓ ↓ ↓	
$\langle \checkmark X \rangle$	<i>i</i> -Pr ₂ NEt, TfOB pentane,	H		178
OTBDPS	Et ₂ O		OTBDPS	
		OTBDPS	(80-90) I:II = 75:25	
			OTBODS	
		0		
	D. DOT			203
	Bu ₂ BOIT, <i>i</i> -Pr ₂ NEt	11 FII	· · · · (31)	203
TESO OTRE O		0	TESO OTBS O OH	
	PhRCI	u L	(_)67-38 ^d	136
	<i>i</i> -Pr ₂ NEt	**		
t-Bu Si Bu-t		0		
	PhRCl	u L	(72)>99:1	136
~ ~ ~ `				

TABLE IIIA. CHIRAL ENOLATES (SUBSTRATE CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

TABLE IIIA. CHIRAL ENOLATES (SUBSTRATE CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

Enolate Precursor	Reaction Conditions		Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
РМВО О	9-BBNOTf, <i>i</i> -Pf ₂ NEt, Et ₂ O	H Ph		PMBO O OH Ph (88) ^e	47
	$(C_6H_{11})_2BCI,$ EtNMe ₂ , Et ₂ O	н		O O O O O O O O O O O O O O O O O O O	129
				O O O O O O O O O O O O O O O O O O O	
	$(C_6H_{11})_2BCl,$ EtNMe ₂ , Et ₂ O	H R		O O O O O O O O O O O O O O O O O O O	129
			R = Pr, (70) I:II R = <i>i</i> -Pr, (93) I: R = C(Me)=CH R = (CH ₂) ₂ Ph, (= 80:20 $H = 84:16$ $R = 92:8$ $H = 88:12$	
C ₂₂ OMe 0 ⁻ St 0 ⁻ St 0 ⁻ St 0 ⁻ St	Bu-7 OPMB) O -	‰H ₁₁)2BCl, Et ₃ N, Et₂O	H H	$OMe \qquad t-Bu \\ O \\ $	35 50
C ₂₆ Ph Ph r-BuO O	1. LDA, THF 2. B(OR) ₃ 3. Aldehyde	0 H		Ph Ph Ph Ph I-BuO O R = Me, (82) 76:25 R = Bu, (89) 91:9	388

TABLE IIIA. CHIRAL ENOLATES (SUBSTRATE CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

^{*a*} The syn isomers have been assigned as syn-syn:syn-anti = 54:46.

^b This reaction was performed using racemic ketone.

^c The product was reported as a mixture of syn stereoisomers.

^d The stereochemistry of the minor adduct was not determined.

^e The stereochemistry of this product was not depicted.

TABLE IIIB. CHIRAL ENOLATES (SUBSTRATE CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TABLE IIIB. CHIRAL ENOLATES (SUBSTRATE CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TABLE IIIB. CHIRAL ENOLATES (SUBSTRATE CONTROL) WITH CHIRAL ALDEHYDES (Continued)

" The stereochemistry of this product was not reported.

TABLE IVA. CH	IRAL ENOLATES	(LIGAND CO	NTROL) WITH A	CHIRAL ALDEHYDES
		(======================================		

-	Reaction Conditions	Enolate Precursor	Aldehyde	Product(s) and Yield(s) (%), Isomer Ratio, % ee	Refs.
	L ₂ BCl, <i>i</i> -Pr ₂ NEt	Et ₃ CS		$Et_{3}CS \xrightarrow{O} OH R \xrightarrow{R} \frac{\% ee}{i \cdot Pr} (72) 92$ $i \cdot Bu (92) >95$ $n \cdot C_{6}H_{13} (78) 95$ $C_{1}H_{12} (87) 95$	155 155, 156 155, 156
	L ₂ BCl, <i>i</i> -Pr ₂ NEt	Et ₃ CS		$Et_{3}CS \xrightarrow{O} OH \\ R \\ $	155
	L ₂ BCl, <i>i</i> -Pr ₂ NEt	MeO BnO	H	MeO BnO (58) 66% ee	154
	HO HO HO OC ₆ H ₁₁ HO OC ₆ H ₁₁ I. Boronic acid, diol 2. Me ₃ NO 3. Aldehyde HO HO OR OR	B(OH) ₂	H Ph	$ \begin{array}{ccc} 0 & OH \\ & & & & $	177
C	 Boronic acid, diol Me₃NO Aldehyde 	B(OH) ₂	H Ph	O OH Ph $R = Ph, (45) > 95:5, 4\%$ ee R = Ts, (55) > 95:5, 30% ee	177
C,	$L_{2}BOTf, i-Pr_{2}NEt$		H H	О ОН (26) 33% ее	143, 121
	(-)-Ipc ₂ BX (-)-Ipc ₂ BOTf, <i>i</i> -Pr ₂ NEt	, ,		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	145, 121
	(-)-Ipc2BCl, Et3N	o	H H	О ОН (67) 62% ее	121
	(–)-Ipc2BOTf, base		H H	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	145, 121
	(-)-Ipc2BOTf, <i>i</i> -Pr2NEt	CI CI	H H	CI (55) 67% ee	394

TABLE IVA. CHIRAL ENOLATES (LIGAND CONTROL) WITH ACHIRAL ALDEHYDES (C	Continued)

Reaction Conditions	Enolate Precursor	Aldehyde	Product(s) and Yield(s) (%), Isomer Ratio, % ee	Refs.
(-)-Ipc2BOTf, i-Pr2NEt	R	н	$\begin{array}{c cccc} O & OH \\ R & ratio & \% \ ee \\ \hline i \ -Pr & (56) & 92:8 & 65^a \\ i \ -Bu & (62) & >97:3 & 53 \\ Ph & (48) & - & 61 \end{array}$	145, 121
(-)-Ipc2BOTf, i-Pr2NEt	CI	H	O OH Cl (40) >97:3, 80% ee	394
(-)-Ipc2BOTf, i-Pr2NEt			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	121,143 143 143 121,143 121,143 121,143 121,143
			2-furyl (84) 96:4 80 C(Et)=CH ₂ (77) 97:3 86	121,143 21
(-)-Ipc2BOTf, i-Pr2NEt	R	H H	O OH R ratio % ee <i>i</i> -Pr (99) 95:5 88 <i>i</i> -Bu (79) 97:3 86 Ph (97) 98:2 91	121
(-)-Ipc2BCl, Et3N		H H	$\begin{array}{c} 0 OH \\ \hline \end{array} \\ \hline \end{array} \\ I + \\ \hline \end{array} \\ \begin{array}{c} 0 OH \\ \hline \end{array} \\ I \\ I \\ I \end{array} $	121
			(80) 1:11 = 80 (<20% ee):20 (80% ee)	
(-)-Ipc2BOTf, i-Pr2NEt	Ph	н	Ph (48) 61% ee	145, 121
1. (-)-Ipc2BOTf, <i>i</i> -Pr2NEt 2. Aldehyde 3. NaBH4	R	н Ч	OH OH R ratio % ee R	144
1. (-)-Ipc ₂ BOTf, <i>i</i> -Pr ₂ NEt 2. Aldehyde 3. NaBH ₄		H	OH OH (52) 87.5:12.5, 88% ee	144
		H ^O R	$\bigcirc OH \\ \bigcirc C_5H_{11}-n$	
(–)-lpc ₂ BH, THF (–)-lpc ₂ BH, CHCl ₃			$R = C_5 H_{11}$ - <i>n</i> , (54) 65% ee R = Ph, (65) 64% ee	147,148 148
			O OH R	
()-Ipc ₂ BH, THF ()-Ipc ₂ BH, THF ()-Ipc ₂ BH, CH ₂ Cl ₂ ()-Ipc ₂ BH, THF			R = Me, (60) 75% ee R = Ph, (77) 75% ee R = Ph, (70) 62% ee R = t -Bu, (30) 50% ee	148,147 148,147 148 148

TABLE IVA. CHIRAL ENOLATES (LIGAND CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

TABLE IVA. CHIRAL ENOLATES (LIGAND CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

Reaction Conditions	Enolate Precursor	Aldehyde	Product(s) and Yield(s) (%), Isomer Ratio, % ee	F
[(-)-(Menth)CH ₂] ₂ BCl, Et ₃ N, Et ₂ O		H R	O OH R $R = Et, (50) 92:8, 80\% ee$ $R = C(Me)=CH_2, (62) 93:7, 75\% ee$	16
$[(-)-(Menth)CH_2]_2BCl,$ Et ₃ N, Et ₂ O	$\overset{\texttt{l}}{\checkmark}$		$\begin{array}{c cccc} O & OH & R & ratio & \% & ee \\ \hline & & R & Et & (50) & 97:3 & 85 \\ C(Me)=CH_2 & (51) & >99:1 & 88 \\ C_6H_{11} & (54) & >99:1 & 74 \end{array}$	16
$[(-)-(Menth)CH_2]_2BCl,$ Et ₃ N, Et ₂ O		н	0 OH (60) >99:1, 74% ee	16
$[(-)-(Menth)CH_2]_2BCl,$ Et ₃ N, Et ₂ O	° (H H	O OH (59) >99:1, 56% ee	16
[(-)-(Menth)CH ₂] ₂ BCl, Et ₃ N, Et ₂ O	Ph	H	p_{h} p_{h} $(60) > 99:1, 86\% ee$	16
[(–)-(Menth)CH ₂] ₂ BBr, Et ₃ N, Et ₂ O, CH ₂ Cl ₂	t-BuS		$\begin{array}{c c} R & R & \frac{\% \ ee}{Pr} \\ \hline Pr & (85) & 94.0 \\ \hline i \cdot Pr & (75) & 95.2 \\ C(Me) = CH_2 & (71) & 87.2 \\ Ph & (68) & 89.4 \\ C_6H_{11} & (88) & 93.4 \\ (CH_2)_2Ph & (90) & 96.6 \end{array}$	16
{(-)-(Menth)CH ₂] ₂ BBr, Et ₃ N, Et ₂ O, CH ₂ Cl ₂	Et ₃ CS		$Et_{3}CS \xrightarrow{O} OH R \xrightarrow{R} \frac{\% ee}{i \cdot Pr} (85) 94.8$ $C(Me)=CH_{2} (60) 85.0$ $Ph (64) 86.0$	16
[(–)-(Menth)CH ₂] ₂ BBr, Et ₃ N, Et ₂ O, CH ₂ Cl ₂	Phs Phs	н	$PhS \longrightarrow OH (60) 60\% ee$	10
$[(-)-(Menth)CH_2]_2BBr,$ Et ₃ N, Et ₂ O, CH ₂ Cl ₂			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10
[(−)-(Menth)CH ₂] ₂ BBr, Et ₃ N, Et ₂ O, CH ₂ Cl ₂	r-BuS		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
[(-)-(Menth)CH ₂] ₂ BBr, Et ₃ N, Et ₂ O, CH ₂ Cl ₂	PhS PhS	H R	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
[(-)-(Menth)CH ₂] ₂ BBr, Et ₂ N, Et ₂ O, CH ₂ Cl ₂	t-BuS OBn		<i>t</i> -BuS OBn <i>i</i> -Pr (507) 97:3 95.2	1

	CUIDAI	ENOLATES		CONTROL	WITH ACHIRAL	ALDEHYDES	(Continued)
ABLE IVA.	CHIRAL	LENULATES	LIGAND	CONTROL)	WITH ACHINAL	ALDLITIDLO	(commuca)

Reaction Conditions	Enolate Precursor	Aldehyde	Product(s) and Yield(s) (%), Isomer Ratio, % ee	Refs.
[(-)-(Menth)CH ₂] ₂ BBr, Et ₃ N, Et ₂ O, CH ₂ Cl ₂	PhS OR	H Ph	PhS Ph Ph R ratio % ee OR TBS (79) >99:1 97	163
$[(-)-(Menth)CH_2]_2BBr,$ Et ₃ N, Et ₂ O, CH ₂ Cl ₂	r-BuS Cl		$\begin{array}{c c} O & OH \\ \hline r-BuS & \hline Cl & R & \hline R & ratio & \% & ee \\ \hline Pr & (73) & 96:4 & 94.6 \\ \hline i \cdot Pr & (70) & 96:4 & 94 \\ Ph & (65) & 91:9 & >98 \end{array}$	163
[(-)-(Menth)CH ₂] ₂ BBr, Et ₃ N, Et ₂ O, CH ₂ Cl ₂	r-BuS Br	H R	$\begin{array}{c c} O & OH \\ i-BuS & R \\ Br \\ R \\ $	163
{()-(Menth)CH ₂] ₂ BBr, Et ₃ N, Et ₂ O, CH ₂ Cl ₂	PhS R	н	$PhS \xrightarrow{O}_{R} I + PhS \xrightarrow{O}_{R} I$ II	
C_{26} Ph Ph ArO ₂ S-N N-SO ₂ Ar Br			R = CI, (55) I:II = 52 (92.6% ee):48 (90% ee) $R = Br, (55) I:II = 80 (92% ee):20 (86% ee)$	163 163
$Ar = p - O_2 NC_6 H_4$ $L_2 BBr, i - Pr_2 NEt$	PhS	H R	PhS R R R ratio % cc i-Pr (72) 95:5 97 Ph (70) 98:2 95	170, 169
L ₂ BBr, <i>i</i> -Pr ₂ NEt	PhS	II Ph	$PhS \longrightarrow Ph$ (54) ^e	194
$\begin{array}{c} C_{28} \\ Ph \\ T_{SN} \\ B_{i} \\ B_{r} \end{array} \begin{array}{c} Ph \\ Ph \\ TsN \\ B_{i} \\ Br \end{array}$				
L ₂ BBr, <i>i</i> -Pr ₂ NEt			O OH R = Et, (91) >98% ee R $R = i$ -Pr, (85) 95% ee R = Ph, (95) 97% cc	170, 169
L ₂ BBr, <i>i</i> -Pr ₂ NEt	PhS	H R	PhS $R = i$ -Pr, (82) 83% ee R $R = Ph$, (84) 91% ee	170
$C_{30} \xrightarrow{\text{Ph}} \xrightarrow{Ph} P$				
Ar = $3.5 - (CF_3)_2 C_6 H_3$ L ₂ BBr, <i>i</i> -Pr ₂ NEt	R	H Ph	R = OBu-t, (73) 80% ee $R = SBu-t, (82) 73% ee$ $R = SBu-t, (82) 73% ee$ $R = SBu-t, (94) 52% cc''$ $R = SPh, (82) 64% ee$	168

TABLE IVA. CHIRAL ENOLATES (LIGAND CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

Reaction Conditions	Enolate Precursor	Aldehyde	Product(s) and Yield(s) (%), Isomer Ratio, % ce Refs.
L2BBr, i-Pr2NEt	R	O H Ph	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
L ₂ BBr, Et ₃ N, toluene, hexanc	R	0 H Ph	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ArO_2S-N B Br $Ar = 3,5-(CF_3)_2C_6H_3$ $L_2BBr, Et_3N, toluenc$ L_3BBr, Et_3N, CH_2CL_3	O t-BuO Br	H R	$\frac{R}{i \cdot Pr} (90) 98:2 92 167$
L ₂ BBr, Et ₃ N, CH ₂ Cl ₂ L ₂ BBr, Et ₃ N, toluene L ₂ BBr, Et ₃ N, toluene L ₂ BBr, Et ₃ N, CH ₂ Cl ₂ L ₂ BBr, Et ₃ N, toluene	0	0	Ph (86) $98:2$ 96 166 Ph (94) $99:1$ 98 166 C_6H_{11} (65) $98:2$ 91 166 $(CH_2)_2Ph$ (70) $92:8$ 74 166 $(CH_2)_2Ph$ (72) $95:5$ 91 166
L_2BBr , Et_3N , toluene	r-BuO Br	H Ph	<i>t</i> -BuO Ph (96) 99:1, 98% ee 166 Br
L2BBr. Et3N, toluene, hexane	r-BuO		$t-BuO \longrightarrow H = \frac{\kappa}{Ph} = \frac{rauo}{(93)} = \frac{\pi}{98.2} = \frac{94^{f}}{94.6} = 19, 169$ $(E)-CH=CHPh (81) = 99.1 = 98^{f} = 19$
L ₂ BBr, Et ₃ N, toluene, hexane	<i>t</i> -BuO SnBu ₃		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
L2BBr, i-Pr2NEt	PhS	H R	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE IVA. CHIRAL ENOLATES (LIGAND CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

^a This reaction was performed in toluene.

 b The configuration of the product from this reaction would suggest that the enantiomeric reagent (–)-Ipc₂BCl was used.

 $^{\rm c}\,$ Arbitrary assignment of the syn-configuration was made.

^d This reaction was performed in CH₂Cl₂.

" This reaction was performed in toluene/hexane and using Et₃N as base.

 f This reaction was also performed in $\rm CH_2Cl_2$ as solvent giving similar results.

^g The enantiomeric excess of this product was not reported.

TABLE IVB. CHIRAL ENOLATES (LIGAND CONTROL) WITH CHIRAL ALDEHYDES

TABLE IVB. CHIRAL ENOLATES (LIGAND CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TABLE IVB. CHIRAL ENOLATES (LIGAND CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TABLE IVB. CHIRAL ENOLATES (LIGAND CONTROL) WITH CHIRAL ALDEHYDES (Continued)

TABLE IVB. CHIRAL ENOLATES (LIGAND CONTROL) WITH CHIRAL ALDEHYDES (Continued)

		,		
Reaction Conditions	Enolate Precursor	Aldehyde	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
		H OBn	O OH O OH 4 5 OBn I + 4 5 OBn II	164
[(-)-(Menth)CH2]2BBr, Et3N, E	[(-)-(Menth)CH ₂] ₂ BBr, Et ₃ N, Et ₂ O		(72) 1:11:4,5-syn = 71:24:5	
$[(+)-(Menth)CH_2]_2BBr, Et_3N, Et_2O$			(64) I:II:4,5-syn = 37:55:8	
C_{26} $Ph \qquad Ph \qquad Ph \qquad Ph \qquad ArO_2S - N \qquad B' \qquad N - SO_2Ar \qquad B' \qquad Br \qquad Ar = 3 S_1(O_2N)_0C_2H_1$				
(<i>S</i> , <i>S</i>)-L ₂ BBr, <i>i</i> -Pr ₂ NEt	PhS	H OME OTBS	PhS OH OMe OTBS (85) 96:4	195

" No assessment of the enantiomeric purity of these products was given.

TABLE VA. CHIRAL ENOLATES (LIGAND AND SUBSTRATE CONTROL) WITH ACHIRAL ALDEHYDES

Reaction Condi	itions Enolate Precursor	Aldehyde	Product(s) and Yield(s) (%). Diastereomer Ratio	Refs.
(+)-Ipc2BOTf, Et3N (-)-Ipc2BOTf, Et3N	TBSO O 82% ee	H H	$\begin{array}{c} \text{TBSO} & \text{O} & \text{OH} \\ \hline & & \text{TBSO} & \text{O} & \text{OH} \\ \hline & & \text{TBSO} & \text{O} & \text{OH} \\ \hline & & \text{I} & & \text{II} \\ \hline & & \text{I} & & \text{II} \\ \hline & & \text{(62) I:II:5,6-anti = 91:3:6} \\ \hline & & \text{(67) I:II:5,6-anti = 72:21:7} \end{array}$	130
	TBSO O 90% ee	H R	TBSO O OH 3^{2} R + TBSO O OH 1^{3} C R + TBSO OH 1^{3} C R +	
(+)-Ipc ₂ BOTf, Et ₃ N (-)-Ipc ₂ BOTf, Et ₃ N (+)-Ipc ₂ BOTf, Et ₃ N (-)-Ipc ₂ BOTf, Et ₃ N			R = Me, (65) I:II:2,3-anti = 94:2:4 R = Me, (67) I:II:2,3-anti = 72:24:4 $R = C(Me)=CH_2, (79) I:II = 98:2$ $R = C(Me)=CH_2, () I:II = 69:31$	130 130 131 131
(-)-Ipc2BOTf, Et3N (+)-Ipc2BOTf, Et3N	TBSO O racemic	H 0.5 equiv	TBSO O OH I TBSO O OH I TBSO O OH I TBSO O OH I I III $IIIII$ $IIII$ $IIII$ $IIII$ $IIII$ $IIII$ $IIII$ II	131, 132
(+)-Ipc ₂ BOTf, <i>i</i> -Pr ₂ NEt (-)-Ipc ₂ BOTf, <i>i</i> -Pr ₂ NEt	L		(42) I : II = 88:12 (49) I : II = 8:92	
$C_{30} \xrightarrow{\text{Ph}} \xrightarrow{Ph} $	Ar 3			
L2BBr, Et3N, toluene, hexane	, of		O OH R $R = C_6 H_{11}, (91) 93:7^a$ R $R = (CH_2)_2 Ph, (83) 97:3^a$	19

TABLE VA. CHIRAL ENOLATES (LIGAND AND SUBSTRATE CONTROL) WITH ACHIRAL ALDEHYDES (Continued)

 $^{\it a}\,$ This reaction was also repeated in $\rm CH_2Cl_2$ with similar results.

TABLE VB. CHIRAL ENOLATES (LIGAND AND SUBSTRATE CONTROL) WITH CHIRAL ALDEHYDES

Enolate Precursor	Reaction Conditions	Ketone	Product(s) and Yield(s) (%), Diastereomer Ratio	Refs.
C ₆ O N Pr- <i>i</i>	Bu2BOTf, Et3N	CF ₃ CF ₃	$O O OH OH CF_3 (90) >99:1$	107
$C_{12} \xrightarrow{O}_{V} \xrightarrow{O}_{Pr-i} C_{4H_9-n}$	Bu2BOTf, Et3N	CF ₃ CF ₃	$O O OH CF_3 (88) 95:5$ $O CF_3 CF_3 CF_4 H_9 - n$	107
	Bu2BOTf, Et3N	CF ₃ CF ₃	$ \begin{array}{c} $	100
C ₁₅ O N Pr- <i>i</i> Ph	Bu2BOTf, Et3N	CF ₃ CF ₃	$O = V = CF_3 (86) >99:1$ $O = V = CF_3 (86) >99:1$ $P_{\Gamma} - i = Ph$	107

TABLE VI. CHIRAL ENOLATES (AUXILIARY CONTROL) WITH KETONES

9. Acknowledgments

We thank the members of the group who helped proofread the manuscript and provided useful comments, in particular, Dr. Renata Oballa, Malcolm McLeod, Mike Woodrow, and Jeremy Scott. Many co-workers (past and present) are thanked for contributions to much of the chemistry described in this chapter. Finally, we extend our thanks to Bob Joyce for his time and effort in compiling the tables, and to Bill Roush for encouragement and editorial guidance.

End To simplify discussion, (*Z*)- and (*E*)- enolates are assigned whereby the oxygen–metal substituent is designated a higher priority than R^1 **Notes** (see Eqs. 3 and 4).

*

 * The yield and selectivity of this reaction are improvements over the published procedure (see Experimental Procedures for details). (120,151)

References

- 1. Franklin, A. S.; Paterson, I. Cont. Org. Synthesis 1994, 1, 317.
- Heathcock, C. H.; Kim, B. M; Williams, S. F.; Masamune, S.; Paterson, I.; Gennari, C. in *Comprehensive Organic Synthesis*, Trost, B. M., Ed., Pergamon, Oxford, 1991, Vol. 2.
- 3. Evans, D. A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. 1982, 13, 1.
- 4. Heathcock, C. H. in *Asymmetric Synthesis*, Morrison, J. D., Ed., Academic Press, New York, 1984, Vol. **3**, Chapter 2.
- 5. Mukaiyama, T.; Kobayashi, S. Org. React. 1994, 46, 1.
- Bernardi, A.; Gennari, C.; Goodman, J. M.; Paterson, I. Tetrahedron: Asymmetry 1995, 6, 2613.
- 7. Heathcock, C. H. in *Comprehensive Carbanion Chemistry*, Buncel, E.; Durst, T., Ed., Elsevier, Amsterdam 1984, 177.
- Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985, 24, 1.
- 9. Mukaiyama, T. Org. React. 1982, 28, 203.
- For early pioneering studies of the boron-mediated aldol reaction, see: (a) Fenzyl, W.; Köster, R. Liebigs Ann. Chem. 1975, 1322; (b) Fenzyl, W.; Köster, R.; Zimmerman, H.-J. Liebigs Ann. Chem. 1975, 2201; (c) Mukaiyama, T.; Inomata, K.; Muraki, M. J. Am. Chem. Soc. 1973, **95**, 967; (d) Inoue, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1980, **53**, 174; (e) Mukaiyama, T.; Inoue, T. Chem. Lett. 1976, 559; (f) Evans, D. A. Vogel, E.; Nelson, J. V. J. Am. Chem. Soc. 1979, **101**, 6120; (g) Evans, D. A.; Taber, T. R. Tetrahedron Lett. 1980, **21**, 4675; (h) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, **103**, 3099; (i) Masamune, S.; Mori, S.; Van Horn, D.; Brooks, D. W. Tetrahedron Lett. 1979, 1665; (j) Hirama, M.; Masamune, S. Tetrahedron Lett. 1979, 2225; (k) Van Horn, D. E.; Masamune, S. Tetrahedron Lett. 1979, 2229; (l) Hirama, M.; Garvey, D. S.; Lu, L. D.-L.; Masamune, S. Tetrahedron Lett. 1979, 3937.
- Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. J. Am. Chem. Soc. 1989, **111**, 3441.
- 12. Brown, H. C.; Ganesan, K.; Dhar, R. K. J. Org. Chem. 1993, 58, 147.
- 13. Mukaiyama, T.; Pure Appl. Chem. 1983, 55, 1749.
- 14. Brown, H. C.; Dhar, R. K.; Ganesan, K.; Singaram, B. J. Org. Chem. 1992, **57**, 499.
- 15. Brown, H. C.; Dhar, R. K.; Ganesan, K.; Singaram, B. J. Org. Chem. 1992, **57**, 2716.
- 16. Brown, H. C.; Ganesan, K.; Dhar, R. K. J. Org. Chem. 1992, 57, 3767.
- 17. Ganesan, K.; Brown, H. C. J. Org. Chem. 1993, 58, 7162.

- 18. Goodman, J. M.; Paterson, I. Tetrahedron Lett. 1992, 33, 7223.
- 19. Corey, E. J.; Kim, S. S. J. Am. Chem. Soc. 1990, 112, 4976.
- 20. Gustin, D. J.; VanNieuwenhze, M. S.; Roush, W. R. Tetrahedron Lett. 1995, **36**, 3443.
- 21. Paterson, I.; Hulme, A. N. J. Org. Chem. 1995, 60, 3288.
- 22. Hoffmann, R. W.; Dahmann, G. Chem. Ber. 1994, 127, 1317.
- 23. Roush, W. R.; Palkowitz, A. D. J. Org. Chem. 1989, 54, 3009.
- 24. Anh, N. T.; Eisenstein, O. Nouv. J. de Chim. 1977, 1, 61.
- 25. Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199.
- 26. Paterson, I.; Hulme, A. N. Tetrahedron Lett. 1990, 31, 7513.
- 27. Evans, D. A.; Bartroli, J. Tetrahedron Lett. 1982, 23, 807.
- 28. Roush, W. R. J. Org. Chem. 1991, 56, 4151.
- 29. Gennari, C.; Vieth, S.; Comotti, A.; Vulpetti, A.; Goodman, J. M.; Paterson, I. Tetrahedron 1992, **48**, 4439.
- 30. Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1991, 30, 1531.
- Gennari, C.; Bernardi, A.; Cardani, S.; Scolastico, C. Tetrahedron 1984, 40, 4059.
- Cumming, J. G.; Paterson, I. University Chemical Laboratory, Cambridge, UK, unpublished results.
- 33. Paterson, I.; Bower, S.; Tillyer, R. D. Tetrahedron Lett. 1993, **34**, 4393.
- 34. Paterson, I.; Cumming, J. G.; Smith, J. D.; Ward, R. A. Tetrahedron Lett. 1994, **35**, 441.
- 35. Paterson, I.; Ward, R. A.; Smith, J. D.; Cumming, J. G.; Yeung, K.-S. Tetrahedron 1995, **51**, 9437.
- 36. Paterson, I.; Bower, S.; McLeod, M. D. Tetrahedron Lett. 1995, 36, 175.
- 37. Evans, D. A.; Duffy, J. L.; Dart, M. J. Tetrahedron Lett. 1994, 35, 8537.
- 38. Evans, D. A.; Dart, M. J.; Duffy, J. L.; Rieger, D. L. J. Am. Chem. Soc. 1995, **117**, 9073.
- Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G.; Livingston, A. B. J. Am. Chem. Soc. 1995, **117**, 6619.
- 40. Evans, D. A.; Gage, J. R. Tetrahedron Lett. 1990, **31**, 6129.
- 41. Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127.
- 42. Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 83.
- 43. Meyers, A. I.; Spohn, R. F.; Linderman, R. J. J. Org. Chem. 1985, **50**, 3633.
- 44. Evans, D. A.; Takacs, J. M.; McGee, L. R.; Ennis, M. D.; Mathre, D. J.; Bartroli, J. Pure Appl. Chem. 1981, **53**, 1109.
- 45. Martin, S. F.; Guinn, D. E. J. Org. Chem. 1987, 52, 5588.
- 46. Martin, S. F.; Dodge, J. A.; Burgess, L. E.; Hartmann, M. J. Org. Chem.

1992, **57**, 1070.

- 47. Dahmann, G.; Hoffmann, R. W. Liebigs Ann. Chem. 1994, 837.
- 48. Hayashi, K.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1991, 32, 7287.
- 49. Boger, D. L.; Menezes, R. F. J. Org. Chem. 1992, 57, 4331.
- 50. Boger, D. L.; Colletti, S. L.; Honda, T.; Menezes, R. F. J. Am. Chem. Soc. 1994, **116**, 5607.
- 51. Evans, D. A.; Sjogren, E. B.; Bartroli, J.; Dow, R. L. Tetrahedron Lett. 1986, **27**, 4957.
- 52. Evans, D. A.; Sjogren, E. B. Tetrahedron Lett. 1986, 27, 4961.
- 53. Evans, D. A.; Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler, R. J. Am. Chem. Soc. 1990, **112**, 5290.
- 54. Chiang, Y.-C. P.; Yang, S. S.; Heck, J. V.; Chabala, J. C.; Chang, M. N. J. Org. Chem. 1989, **54**, 5708.
- 55. Braun, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 24.
- 56. Boger, D. L.; Curran, T. T. J. Org. Chem. 1992, 57, 2235.
- 57. Jones, T. K.; Reamer, R. A.; Desmond, R.; Mills, S. G. J. Am. Chem. Soc. 1990, **112**, 2998.
- 58. Evans, D. A.; Sjogren, E. B.; Weber, A. E.; Conn, R. E. Tetrahedron Lett. 1987, **28**, 39.
- 59. Abdel-Magid, A.; Lantos, I.; Pridgen, L. N. Tetrahedron Lett. 1984, **25**, 3273.
- Abdel-Magid, A.; Pridgen, L. N.; Eggleston, D. S.; Lantos, I. J. Am. Chem. Soc. 1986, **108**, 4595.
- 61. Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, **112**, 7001.
- 62. Paterson, I.; Patel, S. K.; Porter, J. R. Tetrahedron Lett. 1983, 24, 3395.
- 63. Paterson, I.; Laffan, D. D. P.; Rawson, D. J. Tetrahedron Lett. 1988, **29**, 1461.
- 64. Chibale, K.; Warren, S. Tetrahedron Lett. 1992, 33, 4369.
- 65. Walkup, R. D.; Kim, Y. S. Tetrahedron Lett. 1995, 36, 3091.
- 66. Damon, R. E.; Coppola, G. M. Tetrahedron Lett. 1990, 31, 2849.
- 67. Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, **28**, 6141.
- 68. Evans, D. A.; Bender, S. L. Tetrahedron Lett. 1986, 27, 799.
- 69. Thaisrivongs, S.; Pals, D. T.; Kroll, L. T.; Turner, S. R.; Han, F.-S. J. Med. Chem. 1987, 30, 976.
- Thaisrivongs, S.; Tomasselli, A. G.; Moon, J. B.; Hui, J.; McQuade, T. J.; Turner, S. R.; Strohbach, J. W.; Howe, W. J.; Tarpley, W. G.; Heinrikson, R. L. J. Med. Chem. 1991, **34**, 2344.

- 71. Davies, S. G.; Mortlock, A. A. Tetrahedron: Asymmetry 1991, 2, 1001.
- 72. Kiefel, M. J.; Maddock, J.; Pattenden, G. Tetrahedron Lett. 1992, **33**, 3227.
- 73. Nicolaou, K. C.; Piscopio, A. D.; Bertinato, P.; Chakraborty, T. K.; Minowa, N.; Koide, K. Chem. Eur. J. 1995, **1**, 318.
- 74. Ishiwata, H.; Sone, H.; Kigoshi, H.; Yamada, K. Tetrahedron 1994, **50**, 12853.
- 75. Ishiwata, H.; Sone, H.; Kigoshi, H.; Yamada, K. J. Org. Chem. 1994, **59**, 4712.
- 76. Hsiao, C.-N.; Liu, L.; Miller, M. J. J. Org. Chem. 1987, **52**, 2201.
- 77. Davies, S. G.; Doisneau, G. J.-M.; Prodger, J. C.; Sanganee, H. J. Tetrahedron Lett. 1994, **35**, 2373.
- 78. Banks, M. R.; Cadogan, J. I. G.; Gosney, I.; Grant, K. J.; Hodgson, P. K. G.; Thorburn, P. Heterocycles 1994, **37**, 199.
- 79. Boeckman, R. K. Jr.; Connell, B. T. J. Am. Chem. Soc. 1995, 117, 12368.
- Ghosh, A. K.; Duong, T. T.; Mckee, S. P. J. Chem. Soc., Chem. Commun. 1992, 1673.
- 81. Davies, S. G.; Mortlock, A. A. Tetrahedron Lett. 1991, **32**, 4787.
- 82. Davies, S. G.; Edwards, A. J.; Evans, G. B.; Mortlock, A. A. Tetrahedron 1994, **50**, 6621.
- 83. Yan, T.-H.; Chu, V.-V.; Lin, T.-C.; Tseng, W.-H.; Cheng, T.-W. Tetrahedron Lett. 1991, **32**, 5563.
- 84. Yan, T.-H.; Tan, C.-W.; Lee, H.-C.; Lo, H.-C.; Huang, T.-Y. J. Am. Chem. Soc. 1993, **115**, 2613.
- Gonzalez, F. B.; Baz, J. P.; Santinelli, F.; Real, F. M. Bull. Chem. Soc. Jpn. 1991, 64, 674.
- Hsiao, C.-N.; Ashburn, S. P.; Miller, M. J. Tetrahedron Lett. 1985, 26, 4855.
- 87. Kazmierczak, F.; Helquist, P. J. Org. Chem. 1989, 54, 3988.
- 88. Rychnovsky, S. D.; Rodriguez, C. J. Org. Chem. 1992, 57, 4793.
- 89. Rychnovsky, S. D.; Hoye, R. C. J. Am. Chem. Soc. 1994, **116**, 1753.
- 90. Huber, I.; Schneider, F. Helv. Chim. Acta 1994, 77, 1065.
- 91. Powers, T. S.; Shi, Y.; Wilson, K. J.; Wulff, W. D.; Rheingold, A. L. J. Org. Chem. 1994, **59**, 6882.
- 92. Otsuka, K.; Ishizuka, T.; Kimura, K.; Kunieda, T. Chem. Pharm. Bull. 1994, **42**, 748.
- 93. Yan, T.-H.; Hung, A.-W.; Lee, H.-C.; Chang, C.-S. J. Org. Chem. 1994, 59, 8187.
- 94. Yan, T.-H.; Hung, A.-W.; Lee, H.-C.; Chang, C.-S.; Liu, W.-H. J. Org. Chem. 1995, **60**, 3301.

- 95. Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E. J. Am. Chem. Soc. 1990, **112**, 2767.
- 96. Oppolzer, W. Pure Appl. Chem. 1988, 60, 39.
- 97. Oppolzer, W.; Rodriguez, I.; Starkemann, C.; Walther, E. Tetrahedron Lett. 1990, **31**, 5019.
- 98. Oppolzer, W.; Rodriguez, I. Helv. Chim. Acta 1993, 76, 1275.
- 99. Oppolzer, W. Pure Appl. Chem. 1990, 62, 1241.
- 100. Iseki, K.; Oishi, S.; Kobayashi, Y. Chem. Lett. 1994, 1135.
- 101. Oppolzer, W.; Lienard, P. Helv. Chim. Acta 1992, 75, 2572.
- 102. Danda, H.; Hansen, M. M.; Heathcock, C. H. J. Org. Chem. 1990, **55**, 173.
- 103. Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991, 56, 5747.
- 104. Raimundo, B. C.; Heathcock, C. H. Synlett 1995, 1213.
- 105. Yamago, S.; Machii, D.; Nakamura, E. J. Org. Chem. 1991, 56, 2098.
- 106. Kende, A. S.; Kawamura, K.; Orwat, M. J. Tetrahedron Lett. 1989, **30**, 5821.
- 107. Iseki, K.; Oishi, S.; Taguchi, T.; Kobayashi, Y. Tetrahedron Lett. 1993, **34**, 8147.
- 108. Masamune, S.; Choy, W.; Kerdesky, F. A. J.; Imperiali, B. J. Am. Chem. Soc. 1981, **103**, 1566.
- 109. Van Draanen, N. A.; Arseniyadis, S.; Crimmins, M. T.; Heathcock, C. H. J. Org. Chem. 1991, 56, 2499.
- 110. Paterson, I.; Wallace, D. J.; Velázquez, S. M. Tetrahedron Lett. 1994, **35**, 9083.
- 111. Enders, D.; Lohray, B. B. Angew. Chem., Int. Ed. Engl. 1988, 27, 581.
- 112. Choy, W.; Ma, P.; Masamune, S. Tetrahedron Lett. 1981, 22, 3555.
- 113. Masamune, S.; Lu, L. D.-L.; Jackson, W. P.; Kaiho, T.; Toyoda, T. J. Am. Chem. Soc. 1982, **104**, 5523.
- 114. Masamune, S.; Imperiali, B.; Garvey, D. S. J. Am. Chem. Soc. 1982, **104**, 5528.
- 115. McCarthy, P. A. Tetrahedron Lett. 1982, 23, 4199.
- 116. Masamune, S.; Hirama, M.; Mori, S.; Ali, S. A.; Garvey, D. S. J. Am. Chem. Soc. 1981, **103**, 1568.
- 117. Paterson, I.; Wallace, D. J. Tetrahedron Lett. 1994, 35, 9087.
- 118. Paterson, I.; Wallace, D. J. Tetrahedron Lett. 1994, 35, 9477.
- 119. Paterson, I.; Lister, M. A. Tetrahedron Lett. 1988, 29, 585.
- 120. Paterson, I.; Goodman, J. M.; Isaka, M. Tetrahedron Lett. 1989, 30, 7121.
- 121. Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. Tetrahedron 1990, 46, 4663.

- 122. Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.; Lister, M. A. J. Am. Chem. Soc. 1994, **116**, 11287.
- 123. Paterson, I.; Perkins, M. V. Tetrahedron Lett. 1992, 33, 801.
- 124. Paterson, I.; Perkins, M. V. Tetrahedron 1996, 52, 1811.
- 125. Paterson, I.; Ward, R. A.; Romea, P.; Norcross, R. D. J. Am. Chem. Soc. 1994, **116**, 3623.
- 126. Paterson, I.; Perkins, M. V. J. Am. Chem. Soc. 1993, **115**, 1608.
- 127. Paterson, I.; Wren, S. P. J. Chem. Soc., Chem. Commun. 1993, 1790.
- 128. Paterson, I.; Tillyer, R. D. J. Org. Chem. 1993, 58, 4182.
- 129. Evans, D. A.; Ng, H. P.; Clark, J. S.; Rieger, D. L. Tetrahedron 1992, **48**, 2127.
- 130. Paterson, I.; McClure, C. K. Tetrahedron Lett. 1987, 28, 1229.
- Paterson, I.; McClure, C. K.; Schumann, R. C. Tetrahedron Lett. 1989, 30, 1293.
- 132. Paterson, I.; Hulme, A. N.; Wallace, D. J. Tetrahedron Lett. 1991, **32**, 7601.
- 133. Paterson, I. Pure Appl. Chem. 1992, 64, 1821.
- 134. Bernardi, A.; Capelli, A. M.; Comotti, A.; Gennari, C.; Gardner, M.; Goodman, J. M.; Paterson, I. Tetrahedron 1991, **47**, 3471.
- 135. Duffy, J. L.; Yoon, T. P.; Evans, D. A. Tetrahedron Lett. 1995, 36, 9245.
- 136. Evans, D. A.; Calter, M. A. Tetrahedron Lett. 1993, 34, 6871.
- 137. Hamana, H.; Sasakura, K.; Sugasawa, T. Chem. Lett. 1984, 1729.
- 138. Brown, H. C.; Ramachandran, P. V. J. Organomet. Chem. 1995, 500, 1.
- 139. Chandrasekharan, J.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1985, **50**, 5446.
- 140. King, A. O.; Corley, E. G.; Anderson, R. K.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J.; Xiang, Y. B.; Belley, M.; Leblanc, Y.; Labelle, M.; Prasit, P.; Zamboni, R. J. J. Org. Chem. 1993, **58**, 3731.
- 141. Meyers, A. I.; Yamamoto, Y. J. Am. Chem. Soc. 1981, **103**, 4278.
- 142. Meyers, A. I.; Yamamoto, Y. Tetrahedron 1984, 40, 2309.
- 143. Paterson, I.; Lister, M. A.; McClure, C. K. Tetrahedron Lett. 1986, **27**, 4787.
- 144. Bonini, C.; Racioppi, R.; Righi, G.; Rossi, L. Tetrahedron: Asymmetry 1994, **5**, 173.
- 145. Paterson, I.; Goodman, J. M. Tetrahedron Lett. 1989, **30**, 997.
- 146. Goodman, J. M.; Kahn, S. D.; Paterson, I. J. Org. Chem. 1990, 55, 3295.
- 147. Boldrini, G. P.; Mancini, F.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Chem. Soc., Chem. Commun. 1990, 1680.
- 148. Boldrini, G. P.; Bortolotti, M.; Mancini, F.; Tagliavini, E.; Trombini, C.;

Umani-Ronchi, A. J. Org. Chem. 1991, 56, 5820.

- 149. Matsumoto, Y.; Hayashi, T. Synlett 1991, 349.
- 150. Evans, D. A.; Fu, G. C. J. Org. Chem. 1990, 55, 5678.
- 151. Herrera, J. M. S.; Paterson, I. University Chemical Laboratory, Cambridge, UK, unpublished results.
- 152. Masamune, S.; Sato, T.; Kim, B. M.; Wollmann, T. A. J. Am. Chem. Soc. 1986, **108**, 8279.
- 153. Masamune, S. Pure Appl. Chem. 1988, **60**, 1587.
- 154. Reetz, M. T.; Kunisch, F.; Heitmann, P. Tetrahedron Lett. 1986, 27, 4721.
- 155. Reetz, M. T.; Rivadeneira, E.; Niemeyer, C. Tetrahedron Lett. 1990, **31**, 3863.
- 156. Reetz, M. T. Pure Appl. Chem. 1988, 60, 1607.
- 157. Short, R. P.; Masamune, S. Tetrahedron Lett. 1987, 28, 2841.
- 158. Duplantier, A. J.; Masamune, S. J. Am. Chem. Soc. 1990, 112, 7079.
- 159. Blanchette, M. A.; Malamas, M. S.; Nantz, M. H.; Roberts, J. C.; Somfai, P.; Whritenour, D. C.; Masamune, S.; Kageyama, M.; Tamura, T. J. Org. Chem. 1989, 54, 2817.
- Kageyama, M.; Tamura, T.; Nantz, M. H.; Roberts, J. C.; Somfai, P.;
 Whritenour, D. C.; Masamune, S. J. Am. Chem. Soc. 1990, **112**, 7407.
- 161. Gennari, C.; Hewkin, C. T.; Molinari, F.; Bernardi, A.; Comotti, A.; Goodman, J. M.; Paterson, I. J. Org. Chem. 1992, **57**, 5173.
- 162. Gennari, C.; Moresca, D.; Vieth, S.; Vulpetti, A. Angew. Chem., Int. Ed. Engl. 1993, **32**, 1618.
- 163. Gennari, C.; Vulpetti, A.; Moresca, D. Tetrahedron Lett. 1994, 35, 4857.
- 164. Gennari, C.; Moresca, D.; Vulpetti, A.; Pain, G. Tetrahedron Lett. 1994, **35**, 4623.
- 165. Gennari, C.; Pain, G.; Moresca, D. J. Org. Chem. 1995, 60, 6248.
- 166. Corey, E. J.; Choi, S. Tetrahedron Lett. 1991, **32**, 2857.
- 167. Corey, E. J.; Lee, D.-H.; Choi, S. Tetrahedron Lett. 1992, 33, 6735.
- 168. Corey, E. J.; Lee, D.-H. Tetrahedron Lett. 1993, 34, 1737.
- 169. Corey, E. J. Pure Appl. Chem. 1990, 62, 1209.
- 170. Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc. 1989, **111**, 5493.
- 171. Boldrini, G. P.; Lodi, L.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Organomet. Chem. 1987, **336**, 23.
- 172. Hoffmann, R. W.; Ditrich, K. Tetrahedron Lett. 1984, 25, 1781.
- 173. Hoffmann, R. W.; Ditrich, K.; Fröch, S. Liebigs Ann. Chem. 1987, 977.
- 174. Gennari, C.; Cardani, S.; Colombo, L.; Scolastico, C. Tetrahedron Lett. 1984, **25**, 2283.

- 175. Gennari, C.; Colombo, L.; Poli, G. Tetrahedron Lett. 1984, 25, 2279.
- 176. Gennari, C.; Colombo, L.; Scolastico, C.; Todeschini, R. Tetrahedron 1984, **40**, 4051.
- 177. Basile, T.; Biondi, S.; Boldrini, G. P.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Chem. Soc., Perkin Trans. 1 1989, 1025.
- 178. Duplantier, A. J.; Nantz, M. H.; Roberts, J. C.; Short, R. P.; Somfai, P.; Masamune, S. Tetrahedron Lett. 1989, **30**, 7357.
- 179. Roush, W. R.; Bannister, T. D. Tetrahedron Lett. 1992, 33, 3587.
- 180. Toshima, K.; Tatsuta, K.; Kinoshita, M. Bull. Chem. Soc. Jpn. 1988, **61**, 2369.
- 181. Baker, R.; Cummings, W. J.; Hayes, J. F.; Kumar, A. J. Chem. Soc., Chem. Commun. 1986, 1237.
- 182. Baker, R.; Castro, J. L.; Swain, C. J. Tetrahedron Lett. 1988, 29, 2247.
- 183. Baker, R.; Castro, J. L. J. Chem. Soc., Perkin Trans. 1 1989, 190.
- 184. Baker, R.; Castro, J. L. J. Chem. Soc., Perkin Trans. 1 1990, 47.
- 185. Evans, D. A.; Miller, S. J.; Ennis, M. D.; Ornstein, P. L. J. Org. Chem. 1992, 57, 1067.
- 186. Evans, D. A.; Miller, S. J.; Ennis, M. D. J. Org. Chem. 1993, 58, 471.
- 187. Mills, S.; Desmond, R.; Reamer, R. A.; Volante, R. P.; Shinkai, I. Tetrahedron Lett. 1988, **29**, 281.
- 188. Jones, T. K.; Mills, S. G.; Reamer, R. A.; Askin, D.; Desmond, R.; Volante, R. P.; Shinkai, I. J. Am. Chem. Soc. 1989, **111**, 1157.
- 189. Rao, A. V. R.; Chakraborty, T. K.; Purandare, A. V. Tetrahedron Lett. 1990, **31**, 1443.
- 190. Wang, Z. Tetrahedron Lett. 1989, **30**, 6611.
- 191. Jones, A. B.; Villalobos, A.; Linde, R. G.; Danishefsky, S. J. J. Org. Chem. 1990, 55, 2786.
- 192. Maier, M. E.; Schöffling, B. Tetrahedron Lett. 1990, 31, 3007.
- 193. Wang, Z. Tetrahedron Lett. 1991, 32, 4631.
- 194. Batchelor, M. J.; Gillespie, R. J.; Golec, J. M. C.; Hedgecock, C. J. R.; Jones, S. D.; Murdoch, R. Tetrahedron 1994, **50**, 809.
- 195. Corey, E. J.; Huang, H.-C. Tetrahedron Lett. 1989, **30**, 5235.
- 196. Smith, A. B., III; Qiu, Y.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 1995, **117**, 12011.
- 197. Paterson, I.; Schlapbach, A. Synlett 1995, 498.
- 198. Golec, J. M. C.; Gillespie, R. J. Tetrahedron Lett. 1993, 34, 8167.
- 199. Golec, J. M. C.; Jones, S. D. Tetrahedron Lett. 1993, 34, 8159.
- 200. Toshima, K.; Tatsuta, K.; Kinoshita, M. Tetrahedron Lett. 1986, 27, 4741.
- 201. Jackson, R. F. W.; Sutter, M. A.; Seebach, D. Liebigs Ann. Chem. 1985,

2313.

- 202. Seebach, D.; Chow, H.-F.; Jackson, R. F. W.; Lawson, K.; Sutter, M. A.; Thaisrivongs, S.; Zimmermann, J. J. Am. Chem. Soc. 1985, **107**, 5292.
- 203. Seebach, D.; Chow, H.-F.; Jackson, R. F. W.; Sutter, M. A.; Thaisrivongs, S.; Zimmermann, J. Liebigs Ann. Chem. 1986, 1281.
- 204. Ziegler, F. E.; Becker, M. R., J. Org. Chem. 1990, 55, 2800.
- 205. Andersen, M. W.; Hildebrandt, B.; Dahmann, G.; Hoffmann, R. W. Chem. Ber. 1991, **124**, 2127.
- 206. Anderson, M. W.; Hildebrandt, B.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1991, **30**, 97.
- 207. Oppolzer, W.; DeBrabander, J.; Walther, E.; Bernardinelli, G. Tetrahedron Lett. 1995, **36**, 4413.
- 208. Paterson, I.; Cumming, J. G.; Ward, R. A.; Lamboley, S. Tetrahedron 1995, **51**, 9393.
- 209. Paterson, I.; Smith, J. D.; Ward, R. A. Tetrahedron 1995, 51, 9413.
- 210. Paterson, I.; Yeung, K.-S.; Ward, J. D.; Smith, J. D.; Cumming, J. G.; Lamboley, S. Tetrahedron 1995, **51**, 9467.
- 211. Nakata, T.; Komatsu, T.; Nagasawa, K. Chem. Pharm. Bull. 1994, **42**, 2403.
- 212. Nakata, T.; Komatsu, T.; Nagasawa, K.; Yamada, H.; Takahashi, T. Tetrahedron Lett. 1994, **35**, 8225.
- 213. Paterson, I.; Cumming, J. G. Tetrahedron Lett. 1992, 33, 2847.
- 214. Paterson, I.; Smith, J. D. Tetrahedron Lett. 1993, 34, 5351.
- 215. Paterson, I.; Smith, J. D.; Ward, R. A.; Cumming, J. G. J. Am. Chem. Soc. 1994, **116**, 2615.
- 216. Goh, J. B.; Lagu, B. R.; Wurster, J.; Liotta, D. C. Tetrahedron Lett. 1994, **35**, 6029.
- 217. Masamune, S.; Ellingboe, J. W.; Choy, W. J. Am. Chem. Soc. 1982, **104**, 5526.
- 218. Evans, D. A.; McGee, L. R. J. Am. Chem. Soc. 1981, 103, 2876.
- 219. Braun, M.; Sacha, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 1318.
- 220. Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F. J. Am. Chem. Soc. 1991, **113**, 1047.
- 221. McCarthy, P. A.; Kageyama, M. J. Org. Chem. 1987, 52, 4681.
- 222. Evans, D. A.; Ng, H. P.; Rieger, D. L. J. Am. Chem. Soc. 1993, **115**, 11446.
- 223. Evans, D. A.; Ng, H. P. Tetrahedron Lett. 1993, 34, 2229.
- 224. Duthaler, R. O.; Herold, P.; Lottenbach, W.; Oertle, K.; Riediker, M. Angew. Chem., Int. Ed. Engl. 1989, **28**, 495.

- 225. Duthaler, R. O.; Herold, P.; Wyler-Helfer, S.; Riediker, M. Helv. Chim. Acta 1990, **73**, 659.
- 226. Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, **108**, 6757.
- 227. Nerz-Stormes, M.; Thornton, E. R. Tetrahedron Lett. 1986, 27, 897.
- 228. Nerz-Stormes, M.; Thornton, E. R. J. Org. Chem. 1991, 56, 2489.
- 229. Paterson, I.; Tillyer, R. D. Tetrahedron Lett. 1992, 33, 4233.
- 230. Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. J. Am. Chem. Soc. 1990, **112**, 866.
- 231. Gennari, C.; Beretta, M. G.; Bernardi, A.; Moro, G.; Scolastico, C.; Todeschini, R. Tetrahedron 1986, **42**, 893.
- 232. Evans, D. A.; Yang, M. G.; Dart, M. J.; Duffy, J. L.; Kim, A. S. J. Am. Chem. Soc. 1995, **117**, 9598.
- 233. Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G.; Livingston, A. B. J. Am. Chem. Soc. 1995, **117**, 6619.
- 234. Oppolzer, W.; Starkemann, C. Tetrahedron Lett. 1992, 33, 2439.
- 235. Trost, B. M.; Urabe, H. J. Org. Chem. 1990, 55, 3982.
- 236. Heathcock, C. H.; Davidsen, S. K.; Hug, K. T.; Flippin, L. A. J. Org. Chem. 1986, **51**, 3027.
- 237. Reetz, M. T.; Kesseler, K.; Jung, A. Tetrahedron Lett. 1984, 25, 729.
- 238. Reetz, M. T.; Kesseler, K. J. Chem. Soc., Chem. Commun. 1984, 1079.
- 239. Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992, **114**, 9434.
- 240. Tanimoto, N.; Gerritz, S. W.; Sawabe, A.; Noda, T.; Filla, S. A.; Masamune, S. Angew. Chem., Int. Ed. Engl. 1994, **33**, 673.
- 241. Yokokawa, F.; Hamada, Y.; Shioiri, T. Chem. Commun. 1996, 871.
- 242. Carreira, E. M.; Singer, R. A.; Lee, W. J. Am. Chem. Soc. 1994, **116**, 8837.
- 243. Furuta, K.; Maruyama, T.; Yamamoto, H. J. Am. Chem. Soc. 1991, **113**, 1041.
- 244. Ishihara, K.; Maruyama, T.; Mouri, M.; Gao, Q.; Furuta, K.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1993, **66**, 3483.
- 245. Mukaiyama, T.; Shiina, I.; Uchiro, H.; Kobayashi, S. Bull. Chem. Soc. Jpn. 1994, **67**, 1708.
- 246. Roush, W. R. in *Comprehensive Organic Synthesis*, Trost, B. M., Ed., Pergamon, Oxford, 1991, Vol. **2**.
- 247. Hoffmann, R. W.; Weidmann, U. Chem. Ber. 1985, 118, 3966.
- 248. Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, **105**, 2092.
- 249. Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293.
- 250. Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1987, 52, 3702.

- 251. Roush, W. R.; Halterman, R. L. J. Am. Chem. Soc. 1986, 108, 294.
- 252. Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. 1990, **112**, 6339.
- 253. Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc. 1990, **112**, 6348.
- 254. Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Straub, J. A.; Palkowitz, A. D. J. Org. Chem. 1990, **55**, 4117.
- 255. Hoffmann, R. W.; Ditrich, K.; Köster, G.; Stürmer, R. Chem. Ber. 1989, **122**, 1783.
- 256. Brown, H. C.; Jadhav, P. K.; Perumal, P. T. Tetrahedron Lett. 1984, **25**, 5111.
- 257. Vulpetti, A.; Gardner, M.; Gennari, C.; Bernardi, A.; Goodman, J. M.; Paterson, I. J. Org. Chem. 1993, **58**, 1711.
- 258. Martin, S. F.; Lee, W.-C.; Pacofsky, G. J.; Gist, R. P.; Mulhern, T. A. J. Am. Chem. Soc. 1994, **116**, 4674.
- 259. Williams, D. R.; Reddy, J. P.; Amato, G. S. Tetrahedron Lett. 1994, **35**, 6417.
- 260. Rudge, A. J.; Collins, I.; Holmes, A. B.; Baker, R. Angew. Chem., Int. Ed. Engl. 1994, **33**, 2320.
- 261. Saika, H.; Früh, T.; Iwasaki, G.; Koizumi, S.; Mori, I.; Hayakawa, K. Bioorg. Med. Chem. Lett. 1993, 3, 2129.
- 262. Rivero, R. A.; Greenlee, W. J. Tetrahedron Lett. 1991, **32**, 2453.
- 263. Evans, D. A.; Sjogren, E. B. Tetrahedron Lett. 1986, 27, 3119.
- 264. Abiko, A.; Liu, J.-F.; Masamune, S. J. Org. Chem. 1996, 61, 2590.
- 265. Sugano, Y.; Naruto, S. Chem. Pharm. Bull. 1988, **36**, 4619.
- 266. Brown, H. C.; Ganesan, K. Tetrahedron Lett. 1992, 33, 3421.
- 267. Ganesan, K.; Brown, H. C. J. Org. Chem. 1994, 59, 7346.
- 268. Ganesan, K.; Brown, H. C. J. Org. Chem. 1994, 59, 2336.
- 269. Chan, P. C.-M.; Chong, J. M.; Kousha, K. Tetrahedron 1994, 50, 2703.
- 270. Faull, A. W.; Brewster, A. G.; Brown, G. R.; Smithers, M. J.; Jackson, R. J. Med. Chem. 1995, 38, 686.
- 271. Scott, J. P.; Paterson, I. University Chemical Laboratory, Cambridge, UK, unpublished results.
- 272. Brown, H. C.; Joshi, N. N. J. Org. Chem. 1988, 53, 4059.
- 273. Watson, C.; Paterson, I. University Chemical Laboratory, Cambridge, UK, unpublished results.
- 274. Evans, D. A.; Rieger, D. L.; Jones, T. K.; Kaldor, S. W. J. Org. Chem. 1990, **55**, 6260.
- 275. Boschelli, D.; Ellingboe, J. W.; Masamune, S. Tetrahedron Lett. 1984, 25,

3395.

- 276. Ontoria, J. M.; Wallace, P. A.; Paterson, I. University Chemical Laboratory, Cambridge, UK, unpublished results.
- 277. Wallace, D. J.; Paterson, I. University Chemical Laboratory, Cambridge, UK, unpublished results.
- 278. Paterson, I.; Lister, M. A.; Norcross, R. D. Tetrahedron Lett. 1992, **33**, 1767.
- 279. Murakami, M.; Mukaiyama, T. Chem. Lett. 1982, 241.
- 280. Bower, S.; Paterson, I. University Chemical Laboratory, Cambridge, UK, unpublished results.
- 281. Gustin, D. J.; Van Nieuwenhze, M. S.; Roush, W. R. Tetrahedron Lett. 1995, **36**, 3447.
- 282. Hulme, A. N.; Paterson, I. University Chemical Laboratory, Cambridge, UK, unpublished results.
- 283. Patel, D. V.; VanMiddlesworth, F.; Donaubauer, J.; Gannett, P.; Sih, C. J. J. Am. Chem. Soc. 1986, **108**, 4603.
- 284. VanMiddlesworth, F.; Patel, D. V.; Donaubauer, J.; Gannett, P.; Sih, C. J. J. Am. Chem. Soc. 1985, **107**, 2996.
- 285. Paterson, I.; McLeod, M. D. Tetrahedron Lett. 1995, 36, 9065.
- 286. Pridgen, L. N.; Abdel-Magid, A. F.; Lantos, I. Tetrahedron Lett. 1989, **30**, 5539.
- 287. Pridgen, L. N.; Abdel-Magid, A. F.; Lantos, I.; Shilcrat, S.; Eggleston, D. S. J. Org. Chem. 1993, 58, 5107.
- 288. Nicolaou, K. C.; Caulfield, T.; Kataoka, H.; Kumazawa, T. J. Am. Chem. Soc. 1988, **110**, 7910.
- 289. Owa, T.; Otsuka, M.; Ohno, M. Chem. Lett. 1988, 1873.
- 290. Chen, C.; Crich, D. Tetrahedron Lett. 1992, 33, 1945.
- 291. Chen, C.; Crich, D. Tetrahedron 1993, 49, 7943.
- 292. Heathcock, C. H.; Finkelstein, B. L.; Jarvi, E. T.; Radel, P. A.; Hadley, C. R. J. Org. Chem. 1988, **53**, 1922.
- 293. Heathcock, C. H.; Finkelstein, B. L.; Aoki, T.; Poulter, C. D. Science 1985, **229**, 862.
- 294. Cane, D. E.; Yang, C.-C. J. Am. Chem. Soc. 1987, 109, 1255.
- 295. Walba, D. M.; Thurmes, W. N.; Haltiwanger, R. C. J. Org. Chem. 1988, **53**, 1046.
- 296. An, B.; Kim, H.; Cha, J. K. J. Org. Chem. 1993, 58, 1273.
- 297. Akita, H.; Yamada, H.; Matsukura, H.; Nakata, T.; Oishi, T. Tetrahedron Lett. 1990, **31**, 1731.
- 298. Cottard, M.; Kann, N.; Rein, T.; Åkermark, B.; Helquist, P. Tetrahedron Lett. 1995, **36**, 3115.

- 299. Chibale, K.; Hartley, R. C.; Jenkins, K. P.; Simons, M.; Warren, S.; Richards, I. C. Tetrahedron Lett. 1993, **34**, 6783.
- 300. Chibale, K.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1995, 2411.
- 301. Ichikawa, Y.; Tsuboi, K.; Naganawa, A.; Isobe, M. Synlett 1993, 907.
- 302. Naganawa, A.; Ichikawa, Y.; Isobe, M. Tetrahedron 1994, 50, 8969.
- 303. Adamczyk, M.; Mattingly, P. G.; Pan, Y. Tetrahedron Lett. 1995, 36, 5303.
- 304. Masamune, S. Heterocycles 1984, 21, 107.
- 305. Davies, S. G.; Evans, G. B.; Pearce, S. Tetrahedron 1994, 50, 7521.
- 306. Uemura, M.; Minami, T.; Shiro, M.; Hayashi, Y. J. Org. Chem. 1992, **57**, 5590.
- 307. Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1987, **109**, 7151.
- 308. Fuhry, M. A. M.; Holmes, A. B.; Marshall, D. R. J. Chem. Soc., Perkin Trans. 1 1993, 2743.
- 309. Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc. 1988, **110**, 2506.
- 310. Evans, D. A.; Barrow, J. C.; Leighton, J. L.; Robichaud, A. J.; Sefkow, M. J. Am. Chem. Soc. 1994, **116**, 12111.
- 311. Loubinoux, B.; Sinnes, J.-L.; O'Sullivan, A. C.; Winkler, T. Tetrahedron 1995, **51**, 3549.
- 312. Boeckman, R. K. Jr.; Johnson, A. T.; Musselman, R. A. Tetrahedron Lett. 1994, **35**, 8521.
- 313. Evans, D. A.; Ratz, A. M.; Huff, B. E.; Sheppard, G. S. J. Am. Chem. Soc. 1995, **117**, 3448.
- 314. Evans, D. A.; DiMare, M. J. Am. Chem. Soc. 1986, 108, 2476.
- 315. Brown, M. J. B.; Cortes, J.; Cutter, A. L.; Leadley, P. F.; Staunton, J. J. Chem. Soc., Chem. Commun. 1995, 1519.
- 316. Cane, D. E.; Tan, W.; Ott, W. R. J. Am. Chem. Soc. 1993, 115, 527.
- 317. Cane, D. E.; Lambalot, R. H.; Prabhakaran, P. C.; Ott, W. R. J. Am. Chem. Soc. 1993, **115**, 522.
- 318. Robichaud, A. J.; Berger, G. D.; Evans, D. A. Tetrahedron Lett. 1993, **34**, 8403.
- 319. Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497.
- 320. Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc. 1995, **117**, 8106.
- 321. Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 77.
- 322. Parsons, J. G.; Rizzacasa, M. A. Tetrahedron Lett. 1994, 35, 8263.
- 323. Keck, G. E.; Park, M.; Krishnamurthy, D. J. Org. Chem. 1993, 58, 3787.
- 324. Chibale, K.; Warren, S. Tetrahedron Lett. 1991, 32, 6645.
- 325. Loubinoux, B.; Sinnes, J.-L.; O'Sullivan, A. C.; Winkler, T. Helv. Chim. Acta 1995, **78**, 122.

- 326. Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021.
- 327. Rychnovsky, S. D.; Griesgraber, G.; Kim, J. J. Am. Chem. Soc. 1994, **116**, 2621.
- 328. Evans, D. A.; Dow, R. L. Tetrahedron Lett. 1986, 27, 1007.
- 329. Pilli, R. A.; deAndrade, C. K. Z. Synth. Commun. 1994, 24, 233.
- 330. Heathcock, C. H.; Radel, P. A. J. Org. Chem. 1986, 51, 4322.
- 331. Kigoshi, H.; Ojika, M.; Suenaga, K.; Mutou, T.; Hirano, J.; Sakakura, A.; Ogawa, T.; Nisiwaki, M.; Yamada, K. Tetrahedron Lett. 1994, **35**, 1247.
- 332. Paterson, I.; Tillyer, R. D.; Ryan, G. R. Tetrahedron Lett. 1993, 34, 4389.
- 333. Mori, Y.; Asai, M.; Kawade, J.-i; Furukawa, H. Tetrahedron 1995, **51**, 5315.
- 334. Mori, Y.; Asai, M.; Kawade, J.-i.; Okumura, A.; Furukawa, H. Tetrahedron Lett. 1994, **35**, 6503.
- 335. Sone, H.; Kondo, T.; Kiryu, M.; Ishiwata, H.; Ojika, M.; Yamada, K. J. Org. Chem. 1995, 60, 4774.
- 336. Smith, A. B., III; Barbosa, J.; Wong, W.; Wood, J. L. J. Am. Chem. Soc. 1995, **117**, 10777.
- 337. Hale, K. J.; Bhatia, G. S.; Peak, S. A.; Manaviazar, S. Tetrahedron Lett. 1993, **34**, 5343.
- 338. White, J. D.; Johnson, A. T. J. Org. Chem. 1994, **59**, 3347.
- 339. Martin, S. F.; Pacofsky, G. J.; Gist, R. P.; Lee, W.-C. J. Am. Chem. Soc. 1989, **111**, 7634.
- 340. Ku, T. W.; Kondrad, K. H.; Gleason, J. G. J. Org. Chem. 1989, 54, 3487.
- 341. Boger, D. L.; Honda, T.; Dang, Q. J. Am. Chem. Soc. 1994, 116, 5619.
- 342. Amoroso, R.; Cardillo, G.; Mobbili, G.; Tomasini, C. Tetrahedron: Asymmetry 1993, **4**, 2241.
- 343. Oppolzer, W.; Lienard, P. Tetrahedron Lett. 1993, 34, 4321.
- 344. Drewes, S. E.; Malissar, D. G. S.; Roos, G. H. P. Chem. Ber. 1991, **124**, 2913.
- 345. Drewes, S. E.; Malissar, D. G. S.; Roos, G. H. P. Chem. Ber. 1993, **126**, 2663.
- 346. Banks, M. R.; Blake, A. J.; Cadogan, J. I. G.; Dawson, I. M.; Gosney, I.; Grant, K. J.; Gaur, S.; Hodgson, P. K. G.; Knight, K. S.; Smith, G. W.; Stevenson, D. E. Tetrahedron 1992, 48, 7979.
- 347. Drewes, S. E.; Malissar, D. G. S.; Roos, G. H. P. Tetrahedron: Asymmetry 1992, **3**, 515.
- 348. Nemoto, H.; Satoh, A.; Fukumoto, K.; Kabuto, C. J. Org. Chem. 1995, 60, 594.
- 349. Reno, D. S.; Lotz, B. T.; Miller, M. J. Tetrahedron Lett. 1990, **31**, 827.

- 350. Masamune, S.; Kaiho, T.; Garvey, D. S. J. Am. Chem. Soc. 1982, **104**, 5521.
- 351. Banks, M. R.; Dawson, I. M.; Gosney, I.; Hodgson, P. K. G.; Thorburn, P. Tetrahedron Lett. 1995, 36, 3567.
- 352. Sibi, M. P.; Deshpande, P. K.; Ji, J. Tetrahedron Lett. 1995, 36, 8965.
- 353. Dorsey, B. D.; Plzak, K. J.; Ball, R. G. Tetrahedron Lett. 1993, 34, 1851.
- 354. Sankhavasi, W.; Yamamoto, M.; Kohmoto, S.; Yamada, K. Bull. Chem. Soc. Jpn. 1991, **64**, 1425.
- 355. Turcaud, S.; Gonzalez, W.; Michel, J.-B.; Roques, B. P.; Fournie-Zaluski, M.-C. Bioorg. Med. Chem. Lett. 1995, 5, 1893.
- 356. Eustache, J.; Grob, A. Tetrahedron 1994, 50, 6271.
- 357. Curtis, N. R.; Holmes, A. B.; Looney, M. G.; Pearson, N. D.; Slim, G. C. Tetrahedron Lett. 1991, **32**, 537.
- 358. Ewing, W. R.; Bhat, K. L.; Joullié, M. M. Tetrahedron 1986, 42, 5863.
- 359. Evans, D. A.; Polniaszek, R. P. Tetrahedron Lett. 1986, 27, 5683.
- 360. Evans, D. A.; Polniaszek, R. P.; DeVries, K. M.; Guinn, D. E.; Mathre, D. J. J. Am. Chem. Soc. 1991, **113**, 7613.
- 361. Kinoshita, T.; Miyata, M.; Ismail, S. M.; Fujimoto, Y.; Kakinuma, K.; Ikekawa, N.; Morisaki, M. Chem. Pharm. Bull. 1988, **36**, 134.
- 362. Nakamura, S.; Shibasaki, M. Tetrahedron Lett. 1994, 35, 4145.
- 363. Woo, P. W. K. Tetrahedron Lett. 1985, 26, 2973.
- 364. Boyd, S. A.; Mantei, R. A.; Hsiao, C.-N.; Baker, W. R. J. Org. Chem. 1991, **56**, 438.
- 365. Li, W.-R.; Ewing, W. R.; Harris, B. D.; Joullié, M. M. J. Am. Chem. Soc. 1990, **112**, 7659.
- 366. Hailes, H. C.; Handa, S.; Leadlay, P. F.; Lennon, I. C.; Ley, S. V.; Staunton, J. Tetrahedron Lett. 1994, **35**, 315.
- 367. Provencal, D. P.; Gardelli, C.; Lafontaine, J. A.; Leahy, J. W. Tetrahedron Lett. 1995, **36**, 6033.
- 368. Lafontaine, J. A.; Leahy, J. W. Tetrahedron Lett. 1995, 36, 6029.
- 369. Kao, C. M.; Luo, G.; Katz, L.; Cane, D. E.; Khosla, C. J. Am. Chem. Soc. 1994, **116**, 11612.
- 370. Cane, D. E.; Luo, G. J. Am. Chem. Soc. 1995, 117, 6633.
- 371. Kigoshi, H.; Ojika, M.; Ishigaki, T.; Suenaga, K.; Mutou, T.; Sakakura, A.; Ogawa, T.; Yamada, K. J. Am. Chem. Soc. 1994, **116**, 7443.
- 372. Kende, A. S.; Blass, B. E.; Henry, J. R. Tetrahedron Lett. 1995, 36, 4741.
- 373. Walkup, R. D.; Kane, R. R.; Boatman, P. D. Jr.; Cunningham, R. T. Tetrahedron Lett. 1990, **31**, 7587.
- 374. Nicolaou, K. C.; Daines, R. A.; Uenishi, J.; Li, W. S.; Papahatjis, D. P.;

Chakraborty, T. K. J. Am. Chem. Soc. 1988, **110**, 4672.

- 375. Schreiber, S. L.; Goulet, M. T. Tetrahedron Lett. 1987, 28, 6001.
- 376. Hamada, Y.; Hayashi, K.; Shioiri, T. Tetrahedron Lett. 1991, 32, 931.
- 377. Shioiri, T.; Hayashi, K.; Hamada, Y. Tetrahedron 1993, 49, 1913.
- 378. Romo, D.; Johnson, D. D.; Plamondon, L.; Miwa, T.; Schreiber, S. L. J. Org. Chem. 1992, 57, 5060.
- 379. Belshaw, P. J.; Meyer, S. D.; Johnson, D. D.; Romo, D.; Ikeda, Y.; Andrus, M.; Alberg, D. G.; Schultz, L. W.; Clardy, J.; Schreiber, S. L. Synlett 1994, 381.
- 380. Andrus, M. B.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 10420.
- 381. Savrda, J.; Descoins, C. Synth. Commun. 1987, 17, 1901.
- 382. Brimble, M. A. Aust. J. Chem. 1990, 43, 1035.
- 383. Baker, R.; Brimble, M. A. Tetrahedron Lett. 1986, 27, 3311.
- 384. Chattopadhyay, S. K.; Pattenden, G. Tetrahedron Lett. 1995, 36, 5271.
- 385. Paterson, I.; Yeung, K.-S. Tetrahedron Lett. 1993, 34, 5347.
- 386. Paterson, I.; Channon, J. A. Tetrahedron Lett. 1992, 33, 797.
- 387. Luke, G. P.; Morris, J. J. Org. Chem. 1995, 60, 3013.
- 388. Asao, N.; Tsukada, N.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1993, 1660.
- 389. Smith, A. B. III; Noda, I.; Remiszewski, S. W.; Liverton, N. J.; Zibuck, R. J. Org. Chem. 1990, 55, 3977.
- 390. Smith, A. B. III; Leahy, J. W.; Noda, I.; Remiszewski, S. W.; Liverton, N. J.; Zibuck, R. J. Am. Chem. Soc. 1992, **114**, 2995.
- 391. Hoffmann, R. W.; Dahmann, G. Tetrahedron Lett. 1993, 34, 1115.
- 392. Matteson, D. S.; Man, H.-W. J. Org. Chem. 1993, 58, 6545.
- 393. Hanessian, S.; Cooke, N. G.; DeHoff, B.; Sakito, Y. J. Am. Chem. Soc. 1990, **112**, 5276.
- 394. Paterson, I.; Osborne, S. Tetrahedron Lett. 1990, **31**, 2213.
- 395. Jadhav, P. K.; Woerner, F. J. Tetrahedron Lett. 1995, 36, 6383.
- 396. Chow, H.-F.; Seebach, D. Helv. Chim. Acta 1986, 69, 604.
- 397. Fringuelli, F.; Piermatti, O.; Pizzo, F. J. Org. Chem. 1995, 60, 7006.
- 398. Bernardi, A.; Comotti, A.; Gennari, C.; Hewkin, C. T.; Goodman, J. M.; Schlapbach, A.; Paterson, I. Tetrahedron 1994, **50**, 1227.
- 399. Corey, E. J.; Kim, S. S. Tetrahedron Lett. 1990, 31, 3715.
- 400. Paterson, I.; Lister, M. A.; Ryan, G. R. Tetrahedron Lett. 1991, 32, 1749.
- 401. Tomioka, K.; Kanai, M.; Koga, K. Tetrahedron Lett. 1991, 32, 2395.

The Catalyzed α -Hydroxyalkylation and α -Aminoalkylation of Activated Olefins (The Morita—Baylis—Hillman Reaction)

Engelbert Ciganek, Kennett Square, Pennsylvania

1. Introduction

In a patent application published in 1972, Baylis and Hillman reported the reaction of acetaldehyde with ethyl acrylate and acrylonitrile in the presence of catalytic amounts of 1,4-diazabicyclo[2.2.2]octane (DABCO; 1) to give the α -hydroxyethylated products in good yields (Eq. 1). (1) No structure proof was

MeCHO +
$$CO_2Et \xrightarrow{f_N \\ I_{N,7d}} OH (76\%)$$
 (1)

given. (2) The assignment eventually was shown to be correct, but since the initial disclosure was not followed by a journal publication, this remarkably simple, atom-efficient, and useful reaction was ignored for a number of years, (3-5) and it has been only fairly recently that its potential has begun to be explored. The transformation is now commonly referred to as the Baylis— Hillman reaction. This is unfortunate because credit for its invention clearly belongs to Morita, (6) who five years earlier, in patents (7-16) and a brief paper (17) reported the same reaction with the exception that tertiary phosphines were used as the catalysts; he also proposed the currently accepted mechanism. Baylis and Hillman made reference to Morita's work in their patent application. (1) It is true that tertiary amines in general are cheaper, less toxic, and more readily removed than tertiary phosphines. However, the latter sometimes give higher yields in shorter reaction times, and there are a number of examples where they are the only useful catalysts (see Tables VIII and XII).

The DABCO-catalyzed reaction is slow, and reaction times at room temperature of days or even weeks are common. Attempts to remedy this situation by use of other amine catalysts, change of reaction temperature, high pressure, or microwave irradiation have been partially successful. Activated olefins other than acrylonitrile and acrylic esters that have now been shown to undergo the reaction include α , β -unsaturated aldehydes and ketones, vinyl sulfoxides, vinyl sulfones, vinylsulfonates, and vinylphosphonates. β

-Substituted activated olefins do not normally react. Among electrophiles other than aldehydes, unactivated ketones undergo the Morita— Baylis— Hillman reaction only under high pressure, but activation such as in α -halo ketones, α -keto esters, α -keto lactones, and nonenolizable α -diketones often produces very reactive substrates. Imines also can be employed, provided they carry a sufficiently electronegative group on nitrogen (Eq. 2). (18)

$$n-\Pr NTs + OO_2Me \xrightarrow{PPh_3, i-PrOH (cat.),} (80\%) (2)$$

This review covers *catalyzed* α -hydroxyalkylations and α -aminoalkylations of activated olefins. Transition metal catalyzed reactions of this type, such as the

EtCHO + COMe
$$\frac{\text{RuH}_2(\text{Ph}_3)_4, i\text{-PrOH (cat.)},}{40^\circ, 40 \text{ h}} \xrightarrow{\text{Et}} OH (82\%)$$
(3)

one illustrated in Eq. 3, (19) are also included even though they proceed by a different mechanism. Transformations that require stoichiometric amounts of reagents or more than one step are summarized in the section on Comparison With Other Methods but are not included in the Tabular Survey. The Morita–Baylis–Hillman reaction has been reviewed before. (20-22)

1.1.1. Warning

Development of severe contact dermatitis has been reported after exposure to the reaction products of formaldehyde with methyl acrylate (23) and of aldehydes with aryl acrylates. (24) Until the scope of this problem is determined, special precautions should be taken in handling all products of this type.

2. Mechanism and Catalysts

2.1. Amine-catalyzed Reactions

The generally accepted mechanism (5, 20, 25-28) is illustrated for the DABCO-catalyzed reaction of acetaldehyde with methyl acrylate in Eq. 4. Addition of the

catalyst to the activated olefin furnishes zwitterion **2**, which reacts with the electrophile to give zwitterion **3**. Base-assisted *anti* E2 elimination (5) of the catalyst followed by protonation completes the reaction. Alternatively, internal proton transfer to give zwitterion **4** may precede E1cB elimination. Indications that both paths may operate stem from a study of the pressure and solvent dependence of the reaction of benzaldehyde with crotononitrile. (28) Protonation of zwitterion **3** by an external proton donor is yet another possible path, evidence for which is presented below. Addition of the activated olefin to zwitterion **2** to give the head-to-tail dimer (Eq. 5) is a problem only with very reactive activated olefins such as

$$2 + \operatorname{CO_2Me}_{\operatorname{CO_2Me}}$$
(5)

aryl vinyl ketones (see the section on Side Reactions in Scope and Limitations). The Morita–Baylis–Hillman reaction has been shown to be reversible in a number of cases (Eqs. 6, (27, 29) 7, (29) and 8 (30)). All involve acrylates, which are among the

least reactive substrates in the forward reaction; whether additions to the more reactive activated olefins such as acrylonitrile or α , β -unsaturated ketones are also reversible remains to be established. The adduct of benzaldehyde to crotononitrile is stable for at least two days in the presence of DABCO at ambient or elevated pressure, but this may be due to steric hindrance of the reverse reaction. (28) The reaction is first order each in substrates and catalyst. (26, 31) There is no difference in the rates of the reactions of acetaldehyde with α -protio and α -deuterioacrylonitrile. (26) The third step, proton transfer in zwitterion 3, thus occurs after the rate-determining step; the absence of an isotope effect also excludes the remote possibility, (30) at least in this case, that the first step is formation of a vinyl anion by abstraction of the α proton by the catalyst. The second step, attack of the electrophile on zwitterion 2, is thus considered to be rate determining. None of the intermediates in Eq. 4 has been detected spectroscopically, (30) but indirect evidence for zwitterion 4 has been reported (Eq. 74). (32) No radical species indicative of an electron-transfer

mechanism were detected by esr spectroscopy in the reaction of 4-pyridinecarboxaldehyde with methyl acrylate catalyzed by 3-hydroxyquinuclidine. (31)

In an effort to find more efficient catalysts, a number of other tertiary amines have been investigated. In the series of bicyclic amines 1 and 5–8, only 3-hydroxyquinuclidine (5) is more effective than DABCO (1). Four- to tenfold reductions in half-lives are achieved, (33, 34) and catalyst 5 is now routinely used in Morita–Baylis–Hillman reactions. The bicyclic bases 3-acetoxyquinuclidine (6), (33) 3-quinuclidone (7), (35) and quinuclidine (8) (36) are all poorer catalysts than

DABCO. The relative effectiveness in this series roughly follows the p K_a values (37, 38) (given in parentheses) which to a first approximation can be taken as a measure of the nucleophilicity of the catalyst. Quinuclidine (8) is the exception, perhaps because with only one nitrogen it has half the effective concentration of DABCO. The activity of 3-hydroxyquinuclidine has been attributed to stabilization of zwitterion 2 (Eq. 4) by intramolecular hydrogen bonding between the 3-hydroxy group and the negatively charged oxygen. (34) However, modeling studies indicate that such an intermediate suffers from unfavorable nonbonded interactions, and the rate-enhancing effect of 3-hydroxyquinuclidine is now attributed to its ability to protonate zwitterion 3 intermolecularly. (36-36a) Protonation is also achieved by addition of catalytic amounts of methanol, (34, 39, 40) 2-propanol, (41)

1,1,1,3,3,3-hexafluoro-2-propanol, (42) or acetic acid. (40, 43) The same effect may operate in the acceleration of Morita–Baylis–Hillman reactions catalyzed by 1,3-diaminopropane in the presence of phenols (Eq. 9); (44) in the absence of the phenol,

PhCHO +
$$CO_2Et \xrightarrow{H_2N(CH_2)_3NH_2 (0.15 \text{ equiv.}),}_{\text{4-MeOC}_6H_4OH (0.30 \text{ equiv.}),} \xrightarrow{Ph OH}_{CO_2Et} (9)$$

(83%)

the reaction required nine days to go to completion. No explanation was given and an extension of this effect to DABCO and similar amines was not reported. (44)

Chiral disubstituted derivatives of DABCO have also been used as catalysts;

they are discussed in the section on Stereochemistry. The nitrogen in simple tertiary amines is more hindered than in the bicyclic amines mentioned above, but a number have been employed successfully. Thus triethylamine is only slightly less effective than DABCO in the reaction of ethyl glyoxylate with ethyl acrylate (Eq. 10). (45) Similar results are obtained in the reaction of methyl acrylate

with aqueous formaldehyde. (46) In the reaction of the same aldehyde with ethyl acrylate, catalyst efficacy decreases in the expected order trimethylamine > dimethylethylamine > methyldiethylamine > triethylamine. (47) Tripropylamine fails to catalyze the addition of benzaldehyde to acrylonitrile at ambient pressure and temperature. (41) Methyldiethylamine or triethylamine is used extensively in pressure-induced Morita-Baylis-Hillman reactions where attenuation of the catalyst activity is often required. (28, 48-50) Branching α to the nitrogen greatly reduces or eliminates catalytic activity. (41) Thus diisopropylethylamine, 2-dipropylaminobutanol, and N,N-dipropyl- α -methylbenzylamine all fail to catalyze the addition of acrylonitrile to benzaldehyde even under 15 kbar pressure. (41) This is attributed to steric effects and to lower nucleophilicity of the nitrogen as a consequence of a more sp^2 -like configuration. (41) In view of the success with 3-quinuclidinol, it is surprising that simple amino alcohols such as dimethylaminoethanol apparently have not been investigated as potential catalysts. Other amines that were tried but found to be less active than DABCO or inactive are retronecine, (51, 52) brucine, (52) cinchonidine, (52) quinidine, (29, 52) quinine, (52, 53) N-methylprolinol, (52, 53) nicotine, (53) N-methylephedrine, (53) 1,8-bis(dimethylamino)naphthalene, (54) and macrocyclic diamine "receptors." (41) The lithium salts of quinidine and (R)-3-quinuclidinol have been employed in the intramolecular reaction shown in Eq. 11 (29) in which DABCO

(R)-3-LiO-quinuclidine, HMPA, 0°, 30 min (8%; 0% ee)

is ineffective. DBU (1,8-diazabicylo[5.4.0]undec-7-ene) and 4-dimethylaminopyridine are as effective as 1,3-diaminopropane in the reaction of benzaldehyde with ethyl acrylate in the presence of a phenol (Eq. 9). (44) Other authors, on the other hand, report that DBU alone gives less satisfactory results than DABCO or is inactive. (55-57) DBU catalyzes the addition of isobutyraldehyde to cyclohexen-3-one (Eq. 12), (57, 58) but this reaction proceeds via the dienolate since methyl vinyl ketone fails to react under these conditions.

$$i$$
-PrCHO + $\underbrace{O}_{120^{\circ}, 48 \text{ h}}_{(\text{sealed tube})}$ $\underbrace{O}_{OH}_{Pr-i}$ (12)

2.2. Phosphine-catalyzed Reactions

The most likely mechanism of the α -hydroxyalkylation reaction catalyzed by tertiary phosphines (Eq. 13) (17) is identical to that of the amine-catalyzed reaction

except that the initially formed zwitterion **9** can isomerize to phosphorus ylide **10**, which can then undergo a Wittig reaction to give olefin **11**. The latter process may require elevated temperatures (59, 60) (Eq. 14), (60) since it is not observed in reactions

PhCHO +
$$CN \xrightarrow{Ph_3P, EtOH (cat.),} Ph CN (14)$$

that proceed under mild conditions such as the α -aminoalkylation reaction shown in Eq. 2 (18) or the α -hydroxyalkylation involving the more reactive α , β -unsaturated ketones (61, 62) (Eq. 15). (62)

n-BuCHO + COEt
$$\xrightarrow{Ph_3P (4 \text{ mol}\%),}_{C_6H_6, \text{ rt, 16 h}}$$
 $\xrightarrow{n-Bu}_{COEt}$ (15)

With tertiary alkyl or mixed arylalkylphosphines, products of Wittig reactions have not been reported, and acrylates and acrylonitrile can be employed; the reactions also proceed considerably faster than with triphenylphosphine. Phosphines of this type that have been used successfully in the Morita–Baylis–Hillman reaction include tricyclohexylphosphine, (7, 8, 17, 63) tricyclooctylphosphine, (14) diethylcyclohexylphosphine, (14) *n*-butyldicyclohexylphosphine, (14) dimethylphenylphosphine, (29) di-(*n*-butyl)phenylphosphine, (14) (isobutyl)(methyl)phenylphosphine, (29) methyldiphenylphosphine, (29) ("chlorohexyl")diphenylphosphine, (7) and (4-hydroxybutyl)diphenylphosphine. (7, 8, 14) An example is given in Eq. 16. (7) Tributylphosphine

n-PrCHO +
$$CO_2Me$$
 $\frac{\text{tricyclohexylphosphine (1 mol%),}}{\text{dioxane, reflux, 15 h}}$ $n-Pr \longrightarrow OH \\ CO_2Me (16)$
(70%)

has been recommended as the consistently most efficacious phosphine catalyst in Morita–Baylis–Hillman reactions. (63) It has been employed also in conjunction with triethylaluminum in the addition of aldehydes to acrylonitrile (Eq. 17). (64)

$$n-\text{BuCHO} + \text{CN} \xrightarrow[\text{CH}_2\text{Cl}_2, 80^\circ, 22 \text{ h}]{} \text{CH}_2\text{Cl}_2, 80^\circ, 22 \text{ h}} \xrightarrow[\text{OH}]{} \text{CN}$$
(17)

The Lewis acid is believed to activate the aldehyde by coordination to the carbonyl oxygen. (64) The effect of Lewis acids on amine-catalyzed reactions does not appear to have been investigated. With α -branched aldehydes, tributylphosphine gives Michael adducts (62, 65) (Eq. 18). (65) On the other hand, use of this catalyst is reported (63)

to eliminate aldol condensations, which may be a problem when amines are used as catalysts. (66) Head-to-tail dimers (Eq. 5) are formed in many phosphine-catalyzed Morita–Baylis–Hillman reactions, but the amounts are usually small. Trimethylphosphine and 1,4-diphosphabicylo[2.2.2]octane, the phosphorus analog of DABCO, do not catalyze the addition of propionaldehyde to methyl acrylate. (63)

2.3. Transition Metal Complex Catalyzed Reactions

Aldehydes add to α , β -unsaturated ketones under the influence of rhodium and ruthenium hydride complexes. (19, 67-69) The tentative mechanism (Eq. 19) (19) involves

initial formation of metal enolate species 12, which reacts with the aldehyde to give intermediate 13; reversible metal migration to give enolate 14 followed by elimination of metal hydride completes the cycle. Catalysts effective in this transformation are $RhH(PPh_3)_4$, (19, 67) $RuH_2(PPh_3)_4$, (19, **68**) $[Rh(cyclooctadiene) (Ph_2PCH_2CH_2PPh_2)]^+PF_6^-$ in the presence of hydrogen, (19) and $[RhH_m(P-P)S_n]^+BF_4^-$ where P-P are various chiral diphosphines and S are solvent molecules. (69) RhH(Ph₂PMe) and RhH(Ph₂PCH₂CH₂PPh₂)₂ are ineffective. (19) Addition of small amounts of alcohols is beneficial in rhodium hydride catalyzed reactions, but other solvents reduce the yields drastically. (19) This has been taken as evidence against the possibility that the phosphines in the metal complexes are the true catalysts since phosphine-catalyzed Morita-Baylis-Hillman reactions proceed well in solution. Head-to-tail dimerization of the α , β -unsaturated ketone again is only a minor side reaction except for hindered aldehydes such as 2-ethylhexanal or activated enones such as phenyl vinyl ketone where dimerization becomes the predominant reaction. The rhodium hydride catalyzed α -hydroxyalkylation reaction has been extended to acrylonitrile, (69) but experimental details have not yet been published. Acrylates are inactive. (69)

3. Reaction Parameters

3.1. Solvents

As a third-order process, the Morita–Baylis–Hillman reaction as a rule is slowed by dilution with solvents. Reactions are usually carried out neat, preferably with either the activated olefin or the electrophile in excess. There are, however, exceptions. The beneficial effect of adding small amounts of proton donors such as alcohols or acetic acid has already been mentioned. Solvents have been used to overcome poor solubilities of either or both substrates. For amine-catalyzed reactions, tetrahydrofuran, dioxane, dimethoxymethane, glycol ethers, diethyl ether, acetonitrile, chloroform, methylene chloride, methanol, ethanol, n-butanol, and tert-butanol have been used. Tetrahydrofuran is routinely employed to attenuate the high reactivity of α , β -unsaturated ketones. Phosphine-catalyzed reactions have been carried out in benzene or dioxane. In the DABCO-catalyzed reaction of benzaldehyde with acrylonitrile, the relative rates in a series of solvents decrease in the order water \cong formamide \cong ethylene glycol > methanol \cong *N*-methylacetamide > dimethyl sulfoxide \cong dimethylformamide \cong neat > tetrahydrofuran \cong toluene. (70) The beneficial effect of polar solvents (see also ref. 41) has been attributed to an increase in the equilibrium constant for the formation of zwitterion 2 (Eq. 4). The effect of water is particularly noteworthy since the substrates are only poorly water soluble and the reaction is zero order in this solvent. A hydrophobic effect has been invoked as a possible explanation, (70) but the evidence derived from salt effects is ambiguous: addition of lithium iodide or sodium iodide accelerates the reaction in water, potassium iodide has no effect, and cesium iodide and lithium chloride inhibit it. (70) The last slightly accelerates the reaction of m- and *p*-phthalaldehyde with methyl acrylate in the absence of a solvent. (71)

3.2. Temperature and Microwave Irradiation

Most amine-catalyzed Morita–Baylis–Hillman reactions have been carried out at room temperature where reaction rates are often low. This may be a consequence of reports that elevated temperatures cause side reactions. However, there are a number of examples in the Tabular Survey where satisfactory yields at shorter reaction times are obtained by use of elevated temperatures. In the DABCO-catalyzed reaction of acetaldehyde with methyl acrylate, the half-life is reduced from 50 hours at 22° to 1.5 hours at 43°. With other aldehydes the temperature effect is less pronounced but still significant. (72) Polymerization of the activated olefin, one of the more serious side reactions at elevated temperatures, can be minimized in most cases by addition of a radical inhibitor.

Remarkably, lowering the reaction temperature also increases the rates of

amine- and phosphine-catalyzed reactions involving acrylates (Eq. 20). (63) The effect

is particularly dramatic in view of the fact that these reactions were carried out in rather low concentration in dioxane or methylene chloride as the solvent. Differences in equilibrium and rate constants for the formation and reaction of the *E* and *Z* forms of zwitterion **2** (Eq. 4) at different temperatures are believed to be a possible rationale for the rate acceleration at low temperatures. It remains to be determined whether this phenomenon is general for all Morita–Baylis–Hillman reactions. Of relevance in this regard are the reports that the DABCO-catalyzed reactions of *p*-tolualdehyde with acrylonitrile (49) and of benzaldehyde with phenyl acrylate (24) proceed more slowly at low temperature.

Rapid attainment of elevated reaction temperatures is possible with microwave irradiation, and this method has been applied successfully to the Morita–Baylis–Hillman reaction. (74-76) An example is given in Eq. 21. (76) However, use of commercial

microwave ovens (77, 78) requires sealed-tube techniques, which limits the scale and introduces an explosion hazard. (78) These problems are overcome with a continuous microwave reactor; (74, 75) for instance, the DABCO-catalyzed reaction of aqueous formaldehyde with methyl acrylate at 160° proceeds in a yield of 30% with a reaction time of 1.5 minutes. (75)

3.3. Pressure and Sonication

The Morita–Baylis–Hillman reaction is expected to have a large negative volume of activation because of bond formation and charge development prior to and in the rate-determining step, and thus be subject to rate acceleration by

increased pressure. Indeed the volume of activation for the DABCO-catalyzed reaction of acetaldehyde with acrylonitrile is – 79 mL/mole, which is considered to be the sum of the activation volumes for the first two steps of the reaction (Eq. 4), formation of zwitterion 2 and its rate-determining reaction with the aldehyde. (26) The rate of the reaction increases eightfold between ambient pressure and 0.74 kbar, and a million-fold rate increase is extrapolated for a pressure of 5 kbar. (26) In a study of solvent effects in this reaction (at unspecified pressures) equimolar amounts of ethylene glycol increased the rate fourfold in spite of the dilution effect. Monohydric alcohols are not as effective and other solvents even less so. (26) Application of elevated pressures is used to force reactions that fail at ambient pressure, such as addition of ketones to acrylonitrile (but not acrylic esters) (79) or addition of aldehydes to crotononitrile (Eq. 22). (49) The effect of solvents and pressure

on the product E/Z ratio in a closely related reaction (28) is discussed in the Stereochemistry. The DABCO-catalyzed section on addition of propionaldehyde to phenyl vinyl sulfone proceeds in 33% yield at ambient or 0.2 kbar pressure but fails at 7 kbar. (80) This has been attributed to decreasing solubility with increasing pressure although other workers report (with no experimental details) that they did not encounter this problem. (81) In pressure-induced Morita-Baylis-Hillman reactions, polymerization of the activated olefin can be minimized by using an excess of the electrophile; (53) increasing the amount of catalyst or dilution with a solvent is also beneficial. (41)

Exposure of reaction mixtures to ultrasound locally produces the same effect as high pressure. However, in the DABCO-catalyzed addition of a series of aliphatic, alicyclic, and aromatic aldehydes to methyl acrylate, only small rate increases are observed on sonication. (72)

4. Stereochemistry

4.1. E-Z Selectivity

Since β -substituted activated olefins do not undergo the Morita–Baylis–Hillman reaction at ambient pressure, little is known about the *E-Z* selectivity. Polar solvents favor formation of the *E* isomer in the pressure-induced reaction of benzaldehyde with crotononitrile (Eq. 23). (28) *E/Z* ratios at 8 kbar range from about 1

without solvent or in tetrahydrofuran to 4 in methanol. Increased pressure also leads to higher E/Z ratios but this effect is solvent dependent. In chloroform, the E/Z ratio goes from about 1 at 6 kbar to ca. 23 at 15 kbar whereas no change in ratio is observed when methanol is used as the solvent. The E/Z ratios for different catalysts at a constant 8 kbar pressure range from 1 for DABCO to 2 for 3-hydroxyquinuclidine and 4 for triethylamine. These results, as well as those of a similar study with methyl crotonate, (82) have been interpreted in terms of E2 or E1cB mechanisms (Eq. 4) predominating depending on the reaction conditions. (28) In the pressure-induced reaction of the less bulky acetaldehyde with crotononitrile, the Z isomer predominates by a ratio of 4.5:1 (Eq. 22). (49) Addition of formaldehyde to (E)-crotonaldehyde in a microwave flow-reactor gives the E isomer exclusively in low yield (Eq. 24). (74)

4.2. Diastereoselectivity

Two or more diastereomers are formed in reactions where either or both the activated olefin or the electrophile contain asymmetric centers. Considerable effort has been expended to understand and optimize the observed selectivities but so far with only limited success.

4.2.1. Asymmetric Center in the Activated Olefin

The generally low selectivity observed in this situation is usually attributed to the large distance between the chiral and the reacting centers. Most examples reported so far involve esters of acrylic acid. The results in Table A (30, 53, 83-86) show that the diastereoselectivity in most cases is poor except for the reaction of menthyl esters 17 with aromatic aldehydes under high pressure where de values up to 100% have been reported. (53) Less bulky aldehydes add to esters 17 with much lower diastereoselectivity, even under pressure. The results have been interpreted in terms of attack by the aldehyde on the si face of zwitterion 2 (Eq. 4) to produce the S configuration at the newly created chiral center, (53) but the absolute configuration has not been determined. Additions to 8-phenylmenthyl esters 18 (83) in general are more diastereoselective than additions to menthyl esters 17; this has been attributed (83) to a π -stacking effect. (87) It has been argued that in additions to esters 18, it is the reactivity of the aldehyde rather than its bulk that determines the degree of diastereoselectivity; reactive aldehydes give higher de values since the opportunity for equilibration by reverse reaction is diminished. However, the very rapid reactions depicted in Eq. 25 (88) show moderate and no diastereoselectivity, respectively.

A study of diastereoselectivity as a function of reaction time has not yet been reported. The large spread of de values for the reaction of propionaldehyde with camphorsulfonamide 20 is unexplained, as is the similarly large difference in de values for the reactions of benzaldehyde and *p*-tolualdehyde with menthyl ester 17 at ambient pressure. (53)

Table A. Diastereomeric Excess in Reactions of Aldehydes with Chiral Acrylates

$R^{1}CHO + CO_{2}R^{2} \xrightarrow{DABCO} R^{1} \xrightarrow{OH} CO_{2}R^{2}$							
R ¹ R ²	R^3 $SO_2N(R^4)_2$				R ⁴) ₂		
	 McCHCO ₂ Me	PhCHCO ₂ Et	$R^3 = H$	$R^3 = Ph$	$R^4 = i - Pr$	$R^4 = C_6 H_{11}$	$\mathbf{R}^4 = \mathbf{B}\mathbf{n}$
	15	16	17	18	19	20	21
Cl ₃ C				70		25	
Me			6-16, 16 ^{<i>a</i>}	2	30		
Et			16	65	42	7, 9, 70	6
i-Pr			7	42		20	
MeOCH ₂ CHMe	38	38	30			NR ^b	
C ₆ H ₁₁				31		26	
Ph			10-22, 100 ^a	35, 86 ^a	15	10-25	18
4-MeC ₆ H ₄			100, 87 ^a				
4-EtC ₆ H ₄			94^{a}				
$4-O_2NC_6H_4$				60		9	
Naphthyl			23				
2-Furyl			17-20	30			

"The reaction was carried out at 6-8.5 kbar. "There was no reaction.

The most impressive results reported to date involve reactions of aliphatic aldehydes with camphor sultam acrylate **21a** to give 2,4-dialkyl-5-methylene-1,3-dioxan-4-ones in high diastereoselectivity (Eq. **25a**). (88a) The products are

readily converted into α -hydroxyalkyl acrylates, and the chiral auxiliary is easily recovered. This type of reaction involving two molecules of the aldehyde has been also observed with esters of acrylic acid in which the alcohol moiety is a good leaving group (Eqs. 29, 30).

In the single α -hydroxyalkylation of a vinyl sulfoxide, DABCO-catalyzed

addition of phenyl vinyl sulfoxide to benzaldehyde at 19 kbar pressure gives the two diastereomers in equal amounts (Eq. 41). (81)

4.3. Asymmetric Center in the Electrophile

The most extensive study involves addition of single enantiomers of α -branched aldehydes to acrylates and methyl vinyl ketone. (30, 89-92) Syn/anti (93) ratios were determined by X-ray crystallography or NMR spectroscopy of the trichloroacetylurethane derivatives. (94-96) A selection of results (30) is presented in Table B. A change of catalyst has an effect only on the rate but not on the syn/anti ratio (entries 1 and 2). Similarly, the amount of catalyst affects only the rate. Substitution of the carbomethoxy group in the activated olefin by a *tert*-butoxycarbonyl or acetyl group has little effect on the syn/anti ratios. In the majority of additions in this series, the anti isomers (93) are formed predominantly in agreement with the Felkin- Anh model. Values of de are modest; the best (78%) is achieved with the heterocyclic aldehyde in entry 9. Bulky substituents do not necessarily lead to high selectivity (entries 4 and 8). The selectivity reversal in entry 7 has been rationalized in terms of hydrogen bonding involving the amino nitrogen in the transition state. Attempts at double diastereodifferentiation in this series (Table A, line 5) have been disappointing.

ł	R ¹ R ² CHCHO + ∕∕∕	CO₂Me	R ¹ OH CO ₂ Me	R ¹	CO ₂ Me
Entry	\mathbf{R}^1	R ²	Conditions	Yield (%)	anti:syn
1	Me	McOCH ₂ O	DABCO, 4 d	(55)	70:30
2	Me	MeOCH ₂ O	3-Quinuclidinol, 1.5 d	(60)	72:28
3	Me	BnOCH ₂ O	DABCO, 6 d	(42)	70:30
4	Ph	MeOCH ₂ O	DABCO, >10 d	(42)	37:63
5	n-Pr	Me	3-Quinuclidinol, 60 d	(30)	35:65
6	-CH2OC(Me)2O-	-	DABCO, 55 d	(62)	69:31
7	Me	NHCO2Bu-1	DABCO, 7 d	(80)	26:74
8	Me	N-Phthalimidyl	DABCO, 3.5 d	(28)	46:54
9	-CH2OC(Me)2N(CO2B	u- <i>t</i>)	DABCO, <11 d	(43)	89:11

Table B.

In the two examples investigated so far, (53) application of high pressure does not enhance diastereoselectivity appreciably. The first example involves (*R*)-myrtenal (Eq. 26). In the second example, reaction of isopropylidene (*R*)-glyceraldehyde with acrylonitrile under 4 kbar pressure, the diastereomeric excess is 23%. In both reactions, ambient pressure gives equimolar mixtures of the two diastereomers.

$$\begin{array}{c} & & & \\ & &$$

Excellent diastereoselectivities, often approaching 100%, are achieved in reactions involving tricarbonylchromium complexes of *ortho*-substituted aromatic benzaldehydes (Eq. 27). (97) Similar results are obtained with methyl acrylate and

with complexes of *o*-chlorobenzaldehyde. In the reactions of methyl acrylate with tricarbonylchromium complexes of *o*-fluorobenzaldehyde and *o*-tolualdehyde, the de values are lower (84 and 68%, respectively). The dependence of diastereoselectivity on the nature of the *ortho* substituent is also observed in additions of tricarbonylchromium complexes of *ortho*-substituted benzaldehyde tosylimines to methyl acrylate and acrylonitrile. (98) The products are easily decomplexed by exposure to air and sunlight.

4.4. Enantioselectivity

Attempts to achieve high enantioselectivity in the Morita— Baylis— Hillman reaction by use of chiral catalysts have met with only limited success so far. Low values of ee are often obtained even when the chiral center is close to the nitrogen atom. The problem is further complicated by the fact that many chiral catalysts suffer from low efficacy, and application of high pressure is usually required. In the reaction of acetaldehyde with methyl vinyl ketone, 8–12% enantiomeric excesses are obtained with brucine, cinchonidine, quinidine, and quinine, and none with (S)-(–)- prolinol. (52) Retronecine catalyzes the reaction of p-nitrobenzaldehyde with methyl acrylate and methyl vinyl ketone, but the ee values are 11 and 0%, respectively. (52) Similarly low ee values (10–17%) are obtained in the reaction of acetaldehyde with acrylonitrile at

9 kbar pressure catalyzed by (1*R*,2*S*)-*N*-methylephedrine, (*S*)-(–)- nicotine, and (*S*)-(–)- prolinol; quinine fails to catalyze this reaction. (53) The most promising results have been obtained with chiral, 2,3-disubstituted derivatives **22** of DABCO. (39) The addition of 4-nitrobenzaldehyde to methyl vinyl ketone catalyzed by amine **22** (R = CH₂Ph) proceeds with 47% ee at 5 kbar and 12% ee at ambient pressure. Catalysts with other groups R (*t*-BuPh₂Si,*i*-Pr₃Si, Ph, mesityl, 1-naphthyl, 1-naphthoyl, 1-anthryl, and Cbz-gly) are less effective. Reaction of benzaldehyde with acrylonitrile at 12 kbar catalyzed by chiral *trans*-2,3-diphenyl-1,4-diazabicyclo[2.2.2]octane (**23**) (99) proceeds with only 11% ee; similar results are obtained with (–)-3-hydroxyquinuclidine, brucine, strychnine, cinchonidine, cinchonine, quinine, and quinidine. (**8**2) The chiral 2,5-diphenyl (**24a**) (100) and 2,5-dibenzyl (**24b**) (101) derivatives of DABCO have been synthesized; the former is ineffective in Morita— Baylis— Hillman reactions, (102) and results with the latter have not been reported as yet.

There appear to be only two attempts to catalyze a Morita— Baylis— Hillman reaction with a chiral phosphine. The intramolecular reaction depicted in Eq. 28

proceeds with only low asymmetric induction. (29) In the reaction of benzaldehyde tosylimine with methyl acrylate catalyzed by chiral 2,3 bis(diphenylphosphino)butane, the two enantiomers are formed in equal amounts. (18) A two-step α -hydroxyalkylation of acrylates and methyl vinyl ketone, which proceeds with high enantioselectivity, (103) is described in the section on Comparison with Other Methods.

The reaction of acetaldehyde with acrylonitrile in L-ethyl lactate under 5 kbar pressure catalyzed by racemic 3-hydroxyquinuclidine proceeds with essentially no enantioselectivity (3% ee). (53) α -Hydroxyalkylacrylates have

been resolved by fractional crystallization of diastereomeric salt mixtures of the corresponding acids (104) and by kinetic resolution involving hydrogenation with rhodium biphosphine (105) and other chiral catalysts (see references given in the section on Synthetic Utility). Additional methods include acetylation with vinyl acetate catalyzed by Pseudomonas AK, (106) and selective hydrolysis of the acetates by pigliver esterase. (107) Kinetic resolution of 3-methylene-4-(4-nitrophenyl)-4-hydroxy-2-butanone is achieved of by Katsuki-Sharpless epoxidation, (39)that ethyl 2-(1-acetoxyethyl)acrylate by the action of esterases. (108)α -Aminoalkylacrylates have been subjected to kinetic resolution by hydrogenation with rhodium and ruthenium biphosphine catalysts. (109)

5. Scope and Limitations

Kinetic data that would provide an accurate reactivity order among activated olefins and electrophiles are almost nonexistent. The statements made in this section with regard to relative reactivities are therefore only a rough guide and may not hold true in a specific case.

5.1. The Activated Olefin

The reactivity of activated olefins appears to decrease in the order acrolein \cong phenyl vinylsulfonate > α , β -unsaturated ketones > acrylonitrile > acrylic esters \cong ethyl vinylphosphonate > phenyl vinyl sulfone > phenyl vinyl sulfoxide \cong acrylamides. With the exception of the unusually high reactivity of phenyl vinylsulfonate, for which only one example exists, the reactivity increases with the electronegativity of the activating group, as would be expected based on the mechanism of the Morita— Baylis— Hillman reaction. The nature of the amine catalyst does not appear to have any influence on the reactivity order. (33)

5.1.1. Acrylates (Tables I-A to I-E, VIII, X, XI)

Esters of acrylic acid constitute by far the largest group of activated olefins employed in the Morita— Baylis— Hillman reaction, probably because of the versatility of the ester group in further reactions. In a series of additions of benzaldehyde to alkyl acrylates (Table C), (27) the time required after which no more product is formed increases with steric bulk and with chain length of the alcohol. The latter effect may also be steric in nature if the chain folds back on itself, or it could be a consequence of a less polar reaction medium since the reactions were carried with a 30% excess of acrylate and without a solvent. Esters with electronegative groups in the alcohol such as in 2-fluoroethyl, 2-chloroethyl, 2-hydroxyethyl, 2-thiocyanoethyl, 2-phenethyl, and acetylmethyl acrylates react somewhat faster (2–4 days) under the same conditions, 2,2,2-trifluoroethyl acrylate (15 hours) and 2,2,2-trichloroethyl acrylate (36 hours) even more so. 2-Dimethylaminoethyl acrylate requires 8 days. Oddly, 2-bromoethyl acrylate, 3-chloropropyl acrylate, and 6-bromohexyl acrylate fail to react. As a rule, aromatic esters of acrylic acid react more rapidly than aliphatic ones. (24, 27) The results in Table D, (27) obtained under the same conditions as those in Table C, show that there is no simple correlation of substituent σ values with rate. Esters of acrylic acid with 4-trifluoromethylphenol (σ 0.53), 3-cyanophenol (σ 0.62), 4-cyanophenol (σ 0.70), and 4-nitrophenol (σ 0.81) fail to react altogether. This has been attributed to reduced nucleophilicity of intermediate zwitterion 2 (Eq. 4). Aliphatic aldehydes also react with aryl acrylates more rapidly than with alkyl acrylates, but 5-methylene-1,3-dioxan-4-ones (27) are isolated exclusively or in admixture with the normal products 25 (Eq. 29). (24) Formation of heterocycles 27 is also observed in the addition of aliphatic aldehydes to

pantolactone acrylate. (88, 110) The more stable *cis* isomers are formed predominantly, and mixed products can be isolated by sequential addition of two different aldehydes (Eq. 30). (110) The rate-enhancing effect of the pantolactone and aryloxy moieties in these reactions is considered to be electronic in nature; (36) both are also good leaving groups, which explains the subsequent cyclization. This presumes that small amounts of adducts 26 (Eq. 29) are usually formed in α -hydroxyalkylation reactions. Esters of acrylic acid with lactic and mandelic acids also show enhanced reactivity relative to aliphatic acrylates, but these reactions stop at the α -hydroxyalkylation stage. (36, 110)

Table C.

R	time (d)	yield (%)
Ле	6	(89)
Et	7	(79)
n-Bu	4	(85)
i-Bu	16	(85)
t-Bu	28	(65)
n-C ₆ H ₁₃	9	(82)
$n - C_8 H_{17}$	12	(78)
$n-C_{10}H_{21}$	14	(75)
2-Adamantyl ^a	62	(40)

^aThe reaction was carried out in dioxane

Table D.

Only small rate enhancements are observed in the reaction of aliphatic and aromatic aldehydes with a series of ω -hydroxyalkyl acrylates (Eq. 31) (111) even

PhCHO +
$$CO_2(CH_2)_n R \xrightarrow[n]{} Ph \longrightarrow OH \\ CO_2(CH_2)_n R$$

 $\xrightarrow[n]{} R \quad Timd (d) \quad Yield (\%) \\ \hline 2 \quad H \quad 7 \quad (79)^{27} \\ 2 \quad OH \quad 5 \quad (50) \\ \hline 3 \quad OH \quad 3 \quad (66) \\ \hline 4 \quad OH \quad 3 \quad (85) \\ \hline 6 \quad OH \quad 4 \quad (80) \\ \hline 10 \quad OH \quad 6 \quad (78) \end{bmatrix}$
(31)

though addition of small amounts of an alcohol increases the rates of Morita–Baylis–Hillman reactions.

5.1.2. Allenic Esters (Table I-F)

Ethyl allenecarboxylate reacts with propionaldehyde (Eq. 32) or heptanal in the presence of DABCO more rapidly than does ethyl acrylate,

even though the reaction is carried out in solution. (112) Since β -substituted acrylates normally do not undergo the Morita–Baylis–Hillman reaction (see below), it is possible that a change of mechanism involving direct formation of the anion by abstraction of the α proton has taken place; such a mechanism presumably operates when a stoichiometric amount of butyllithium is employed to effect the same net reaction.

5.1.3. Acrylamides (Tables II-A, II-B, VIII)

No additions of aldehydes to acrylamides under ambient conditions have been reported. Even the very reactive 2-pyridinecarboxaldehyde fails to react with either acrylamide or N,N-dimethylacrylamide. (113) The diethylmethylamine-catalyzed reaction of acetaldehyde with acrylamide under 5 kbar pressure is reported to give the α -hydroxyalkylation product in 83% yield after three hours at 20°. (48) Similarly, DABCO-catalyzed addition of acetone to acrylamide under 5 kbar pressure is reported to produce the Morita-Baylis-Hillman product in 5% yield after 17 hours. (25) However, no experimental details or structure proofs have been published for either reaction. The same applies to the report (76) that microwave irradiation of a mixture of 3,4,5-trimethoxybenzaldehyde, acrylamide, and DABCO in methanol for 25 minutes produces the α -hydroxyalkylation product in 40% yield. The poor reactivity of acrylamides is not surprising since they are less electrophilic than most of the other activated olefins discussed in this chapter. However, sultam 21a (Eq. 25a), which carries a second electron-withdrawing group on nitrogen, reacts readily with aldehydes. (88a) Other amides of this type, such as N-acylacrylamides, may behave similarly.

5.1.4. Acrylonitrile (Table III-A–D, VIII–XI)

Acrylonitrile appears to be somewhat more reactive toward aldehydes than alkyl acrylates, but the evidence is not conclusive. Phosphine catalysts appear to be well suited for these reactions (Eq. 33, 34).

DABCO, rt, 24 h $(22\%)^{49}$ $(C_6H_{11})_3P$, dioxane, 30°, 6 h $(74\%)^7$

5.1.5. Acrolein (Tables IV, VIII–XI)

The DABCO-catalyzed addition of acetaldehyde and propionaldehyde proceeds in good yields (Eq. 35). (49) The catalyst concentration

RCHO + CHO
$$\xrightarrow{\text{DABCO (3 mol\%)}}_{20^{\circ}, 10 \text{ d}}$$
 $\xrightarrow{\text{R}}_{\text{CHO}}$ $\xrightarrow{\text{R}}_{\text{R}=\text{Me} (65\%)}_{\text{R}=\text{Et} (71\%)}$ (35)

was kept low, perhaps to minimize polymerization of acrolein. The latter is the exclusive path in the attempted addition of 2-pyridinecarboxaldehyde (113) and α -diketones (114) to acrolein. Halo ketones (Eq. 36) (115) and activated imines (Eq. 37) (116) react very rapidly with acrolein.

Acrolein has been reported to add to itself in the Morita–Baylis–Hillman fashion, (25) but experimental data and a structure proof of the product have not yet been published.

5.1.6. α, β -Unsaturated Ketones (Tables V-A–D, VIII, X, XI)

Additions of aldehydes to alkyl vinyl ketones proceed well with tertiary amine, tertiary phosphine, and rhodium or ruthenium complex catalysts (Eq. 38). Amine-catalyzed additions are often cleaner when carried out in a solvent, usually tetrahydrofuran.

 α -Branched alkyl vinyl ketones react more slowly with DABCO catalysis, but with no reduction in rate when catalyzed with tertiary phosphines (Eq. 39) or

with the rhodium or ruthenium complex system. (19) There is only one report of an aryl vinyl ketone undergoing the Morita–Baylis–Hillman reaction (Eq. 40), (19)

possibly because such ketones dimerize rapidly, especially in the presence of DABCO (see Table XIII-D and the section on Side Reactions). Cyclic enones have not yet been employed in the Morita–Baylis–Hillman reaction. They may be less sterically encumbered than acyclic β -substituted activated olefins, which do not react except under high pressure (see below).

5.1.7. Vinyl Sulfoxides, Vinyl Sulfones, and Vinylsulfonates (Table VI)

Only additions of aldehydes to these substrates have been reported so far, and in all cases the activating substituent carries a phenyl group. In the single example involving a vinyl sulfoxide, drastic reaction conditions are required to achieve a "satisfactory" yield (Eq. 41). (81) No reaction is observed at ambient pressure. (56)

PhCHO + SOPh
$$\xrightarrow{DABCO, rt,}$$
 Ph OH
19 kbar, 48 h SOPh (41)
(0% de)

Phenyl vinyl sulfone reacts at ambient pressure and temperature, but reaction times of weeks are common, especially with less reactive aldehydes (Eq. 42). (56) In

R	OH R	time	Yield (%)	
RCHO + SO ₂ Ph DABCO, rt,	3-pyridyl Me	1 d 2 wk	(46) ⁸⁰ (84)	(42)
	Ph Ph	3 wk	(57)	
	t-Bu	21 wk	(10)	

view of the poor reactivity, it is surprising that neither 3-quinuclidinol nor any of the nonamine catalysts appear to have been employed in these reactions. Vinyl phenyl sulfone is expected to react with some of the more reactive electrophiles such as α -keto esters, halo ketones, and imines, but there are no reports on these variations to date.

Phenyl vinylsulfonate is surprisingly reactive (Eq. 43), (119) but only one example of this class of compounds has been reported.

i-BuCHO +
$$SO_3Ph$$
 $\xrightarrow{DABCO, C_6H_6}$ $\xrightarrow{i-Bu}$ OH SO_3Ph (43)
(87%)

5.1.8. Vinylphosphonates (Table VII)

Only reactions of diethyl vinylphosphonate have been reported so far. (120) They appear to resemble alkyl acrylates in reactivity (Eq. 44).

5.1.9. β -Substituted Activated Olefins

The only successful examples reported to date involve methyl crotonate, crotononitrile, and crotonaldehyde. The DABCO-catalyzed reaction of acetaldehyde with methyl crotonate under 10 kbar pressure at 55° is reported to produce the α -hydroxyalkylation product in "low" yield after 20 hours; the product was characterized only by mass spectroscopy. (49) No structure proof has been published yet for the reaction product of 4-nitrobenzaldehyde with methyl crotonate under microwave irradition (40 minutes, 10% yield). (76) Crotononitrile (Eq. 45) (49) is more reactive than methyl crotonate. (49) Propionaldehyde is reported to react with crotononitrile under the same conditions; the yield is "low" and the product was characterized by mass spectroscopy only. The same applies to the pressure-induced reaction of acetone with crotononitrile. (49)

The reaction of benzaldehyde with crotononitrile under high pressure (Eq. 23) and that of formaldehyde with crotonaldehyde under microwave irradiation (Eq. 24) have been mentioned in the section on *E/Z* selectivity. Benzaldehyde fails to react with dimethyl fumarate or phenyl styryl ketone even under 15 kbar pressure. (82) Clearly, more effective catalysts will have to be developed for β -substituted activated olefins to be amenable to the Morita–Baylis–Hillman reaction.

5.2. The Electrophile

5.2.1. Aldehydes

Aldehydes are the most commonly used electrophiles. As expected on the basis of both electronic and steric considerations, they are much more reactive than simple ketones. Formaldehyde can be employed as an aqueous solution

(formalin), the polymer (paraformaldehyde), as a solution of the monomer in an organic solvent, or as a hemiacetal (Eq. 46). (46) Similar results are

			(46)
Formalin	DABCO, H ₂ O, MeOH, rt, 48 h	(75%)	()
Paraformaldehyde	Me ₃ N, H ₂ O, 60°, 3 h	(80%; ref. 47)	
Monomer	DABCO EtOH rt 72 h	(59%)	
Cyclohexanol hemiacetal	DABCO, cyclohexanol, rt, 70 h	(45%)	

obtained in additions to acrylonitrile, methyl vinyl ketone, and phenyl vinyl sulfone . Aqueous formaldehyde is reported not to react with diethyl vinylphosphonate. (120) Other aliphatic aldehydes with chains of about six carbons or less appear to be only slightly less reactive than formaldehyde. Longer chain and especially α -branched aldehydes react rather slowly (Eq. 47). With DABCO catalysis, pivalaldehyde (2,2-dimethylpropanal)

$$RCHO + \swarrow CO_{2}Me \xrightarrow{DABCO, rt} R \longrightarrow CO_{2}Me \xrightarrow{R} OH \\ rt \longrightarrow CO_{2}Me \xrightarrow{T} CO_{2}Me \xrightarrow{R} OH \\ rt \longrightarrow CO_$$

does not react with methyl acrylate (121) and only very slowly with phenyl vinyl sulfone (Eq. 42). Electron-withdrawing groups on the α carbon enhance reactivity (Eq. 47). Partial lactonization occurs when the aldehyde contains an ester group at a favorable distance in the chain (124, 125) (Eq. 48). (125) The formyl group reacts exclusively in keto aldehydes but

some hemiketalization takes place in the product (Eq. 49). (124) Glutaraldehyde reacts with methyl acrylate to give a cyclic hemiacetal (Eq. 50). (126)

Attempts to add acrolein to activated olefins lead to polymerization instead, (127) but methacrolein, crotonaldehyde, β , β -dimethylacrolein, and cinnamaldehyde react normally with acrylates (Eq. 51) (127) and acrylonitrile. Dimerization of the activated

olefin occurs exclusively in the attempted DABCO-catalyzed addition of methacrolein and crotonaldehyde to methyl vinyl ketone; (127) some α -hydroxyalkylation product is isolated with phosphine catalysis (Eq. 52). (61) Crotonaldehyde does not add to phenyl vinyl sulfone . (56)

Aromatic aldehydes, especially those containing electron-withdrawing groups, add to activated olefins in high yield (Eq. 53). The exceptional reactivity

of tricarbonylchromium complexes of benzaldehyde and *ortho*-substituted benzaldehydes (97) has been mentioned in the section on Diastereoselectivity (Eq. 27). Yields are low when aromatic aldehydes are used in combination with rhodium and ruthenium complexes. (19) The DABCO-catalyzed reaction of 2-hydroxybenzaldehyde with methyl acrylate in chloroform leads to diadduct **29**, (54) which is also obtained on microwave irradiation (76) (Eq. 54). With methylene chloride as the

solvent, formation of quaternary salt **28** is reported; the chloride ion is presumably derived from the solvent. (32) In the reaction of aromatic aldehydes with acrylonitrile, 2:1 complexes with DABCO are sometimes formed (49, 130) (Eq. 55). (49)

They are readily decomposed by treatment with acid. (130) Mono- or diadducts may be obtained in the DABCO-catalyzed reaction of aromatic or heteroaromatic dialdehydes with methyl acrylate (Table I-E) (71, 126, 131) (Eq. 56). (71) With *ortho*-phthalaldehyde, a cyclic hemiacetal is the sole product (Eq. 57). (126) The reactivity

of polynuclear aromatic aldehydes decreases in the order benzaldehyde > 1-naphthaldehyde > 9-anthraldehyde. The last does not add to methyl acrylate with DABCO catalysis at room temperature. (132)

Heteroaromatic aldehydes are excellent electrophiles in the Morita–Baylis–Hillman reaction because of their increased electrophilicity (Eq. 58). (5) The heteroatom

is also believed to facilitate the proton transfers that are involved in the reaction. (5) A small amount of a cyclization product is formed in addition to the normal product in the reaction of 2-pyridinecarboxaldehyde with methyl vinyl ketone (Eq. 59). (113)

5.2.2. Ketones (Table VIII)

Unactivated ketones do not undergo the Morita–Baylis–Hillman reaction under ambient conditions. Acetone adds to *n*-butyl acrylate under the influence of DABCO at 120°, but the conversion is only 7% after 4–6 days. (74) Acetone (Eq. 60), (49) methyl ethyl ketone, and cyclohexanone react under

$$\begin{array}{c} O \\ \hline \\ \end{array} + \\ \hline \\ CN \end{array} \xrightarrow{\text{DABCO, 5 kbar,}} \\ \hline \\ \hline \\ \end{array} \begin{array}{c} OH \\ \hline \\ CN \end{array}$$
(76%) (60)

high pressure with acrylonitrile (25, 48, 49) but not with methyl acrylate. (79) Hindered ketones, such as diisopropyl ketone and aryl alkyl ketones, fail to react even under high pressure. (49) On the other hand, halogenated ketones, even hindered ones, add readily to acrolein (Eq. 36), acrylonitrile, ethyl acrylate (Eq. 61), (115) and presumably also to α , β -unsaturated ketones. The reluctance of

$$\begin{array}{c} O \\ F_{3}C \\ \hline \\ CF_{3} \end{array} + \begin{array}{c} O \\ CO_{2}Et \end{array} \xrightarrow{DABCO, THF,} \\ 20^{\circ}, 3 h \end{array} \xrightarrow{F_{3}C \\ CO_{2}Et} \begin{array}{c} OH \\ F_{3}C \\ \hline \\ CO_{2}Et \end{array} (47\%) (61)$$

ketones to undergo α -hydroxyalkylation thus appears to be electronic rather than steric in nature.

5.2.3. α -Diketones (Table IX)

Reaction of 3,3,5,5-tetramethyl-1,2-cyclopentanedione with acrolein and acrylonitrile (Eq. 62), but not methyl acrylate, gives the

mono- α -hydroxyalkylation products in high yields. (114) Other nonenolizable α -diketones, such as 2,3-bornanedione or 2,3-norbornanedione, react only with acrylonitrile. No reaction is observed with 3,3,6,6-tetramethylcyclohexane-1,2-dione.

5.2.4. α -Keto Esters and α -Keto Lactones (Table X)

 α -Keto esters are very reactive electrophiles in the Morita–Baylis–Hillman reaction (Eqs. 63, (133, 134) 64 (115)).

The keto lactone **34** is less reactive (Eq. 65); (114) the reaction fails with methyl acrylate, probably for steric reasons. (114)

5.2.5. Imines and Iminium Salts (Table XI)

The iminium salt **35**, generated in situ from bis(dimethylamino)methane and acetyl chloride, reacts with methyl vinyl ketone in the absence of a catalyst to give the α -aminoalkylation product in high yield (Eq. 66). (135) The mechanism is believed to be similar to that of

$$CH_2 \stackrel{+}{=} \stackrel{N}{Ne_2} Cl^- + COMe \xrightarrow{MeCN, rt,} (88\%) (66)$$
35

+

the Morita–Baylis–Hillman reaction with chloride ion or a small amount of bis(dimethylamino)methane acting as the catalyst. Imines are excellent electrophiles provided that they carry a sufficiently electronegative substituent on nitrogen. Activating groups that have been employed include methoxycarbonyl (Eq. 67), (136) *tert*-butylcarbonyl, carbobenzoxy, and *p*-toluenesulfonyl (Eq. 68). (18)

In the last example, the imine is prepared in situ from the aldehyde and amine. Hexafluoroacetone imines are among the most reactive electrophiles employed in the Morita–Baylis–Hillman reaction (Eq. 69). (116) When the imine is part of a 1,3-diazabutadiene

system, the initial adduct **36**, which can be observed by (19)F NMR spectroscopy, cyclizes to give a tetrahydropyrimidine (Eq. 70). (137) This

occurs even when the diazabutadiene is part of an aromatic system (Eq. 71). (137) Like the

corresponding benzaldehyde derivatives (Eq. 27), tricarbonylchromium complexes of benzaldimines add rapidly and with excellent diastereoselectivity to activated olefins (Eq. 72). (98) The products are readily decomplexed in high yield and

without epimerization by treatment with air and sunlight. The failure of imines derived from aliphatic aldehydes to add to activated olefins has been attributed to enolization. (138)

5.2.6. Other Electrophiles

Esters, alkyl halides, vinyl ethers, acetic anhydride, and epoxides either do not react under Morita–Baylis–Hillman reaction conditions or give intractable mixtures. (49)

5.3. Intramolecular Reactions

The literature abounds with examples of dramatically increased rates and stereoselectivities of intramolecular reactions as compared to their intermolecular counterparts. Nevertheless, this aspect of the Morita–Baylis–Hillman reaction has received little attention. The cyclization of ketones **37** (Eq. 73) (29) is not

particularly efficient, but it has to be kept in mind that the corresponding intermolecular reaction, addition of acetone to methyl crotonate, fails even under high pressure. The only other reported example of an intramolecular α -hydroxyalkylation is shown in Eq. 74. (32) The source of the chloride ion in salt 40 must be the

solvent. Isolation of salt 40 has been taken as evidence for the intermediacy of zwitterion 38, although salt 40 could in principle also arise from intermediate 39 (cf. Eq. 54).

5.4. Side Reactions

5.4.1. Dimerization and Polymerization of the Activated Olefin (Tables XIII-A–D)

Head-to-tail dimers are formed when the activated olefin acts as the electrophile in Morita–Baylis–Hillman reactions (Eq. 75). This side reaction does

$$2 \qquad R \qquad \xrightarrow{\text{Catalyst}} \qquad R \qquad (75)$$

not occur with methyl and ethyl acrylate, which do not dimerize at room temperature even with equimolar amounts of DABCO. (49, 139) Under 4-kbar pressure at 36°, methyl acrylate gives 25% of the dimer and 8% of a mixture of trimer, tetramer, and pentamer after 23 hours. (49) Acrylates with electronegative groups in the alcohol moiety dimerize under the influence of 20–40 mole percent of DABCO ($CO_2\mathbf{R}$; time, yield): 4-nitrophenyl, 9 hours, 99%; pantolactone, 10 hours, 100%; phenyl and *p*-tolyl, 10 hours, 98%; ethyl mandelate, 8 days, 95%; ethyl lactate, 14 days, 89%. (139) Successful additions to all of these esters have been reported, although the yield from the 4-nitrophenyl ester is low. Whether dimerization is reversible in the presence of DABCO does not appear to have been established, nor has the influence of amine structure on the rate of dimerization been investigated. Tertiary phosphines appear to produce more acrylate dimers than DABCO (see Table XIII-A).

Only dimer formation (17–22%) is observed when acrylamide **41** is treated with aliphatic or aromatic aldehydes in the presence of DABCO at room temperature (84)

(but not at 0°; Eq. 25a). With 50 mol % of DABCO, acrylonitrile dimerizes to the extent of 40% after 10 days at room temperature; (140) with 1 mol % of the catalyst 65% of the dimer is formed after 23 hours at 36° and 4 kbar pressure. (49) With phosphines, dimerization appears to be somewhat more prominent

(see Table XIII-C). α , β -Unsaturated ketones dimerize more rapidly than either acrylates or acrylonitrile (Table XIII-D), but their reactivity in α -hydroxyalkylation reactions is also higher. Substrates containing electronegative groups, such as aryl vinyl ketones and acetylmethyl vinyl ketone, (140) are particularly prone to dimerization with both DABCO and tertiary phosphine catalysis. (61, 62) Polymerization appears to be a significant problem only with acrolein and with some of the other activated olefins at elevated temperatures. The more hindered 2-pentyl acrylate, (50) and presumably also *tert*-butyl acrylate, are less prone to polymerize than methyl acrylate.

5.4.2. Aldol and Michael Additions

Even though DABCO is capable of abstracting the α hydrogen from aldehydes, (37, 141) products arising from these two reactions have been reported only rarely. The products shown in Eq. 76 are believed to

arise by initial Michael addition of the aldehyde to the acrylate; the normal α -hydroxyalkylation products are formed in only small amounts. (124) The Michael addition of 2-methylpropanal to methyl vinyl ketone (Eq. 18) and acrylonitrile in the presence of tributylphosphine has been reported. (65) DABCO-induced aldol condensation of phenylacetaldehyde with itself is postulated to be the first step in the formation of the main product in Eq. 77, (124) but this side reaction can be avoided by use of the 1,3-diaminopropane/4-methoxyphenol catalyst system. (44)

5.4.3. Miscellaneous Side Reactions

In the reaction of 4-chlorobutanal with methyl acrylate, the yield of α -hydroxyalkylation product is reduced as a consequence of quaternization of DABCO by the chloroaldehyde. (5) Solvolysis of methyl acrylate is observed when ethylene glycol or water is used as the solvent. (42) Some 1,2-ethanediol diacrylate is formed in the reaction of propionaldehyde with 2-hydroxyethyl acrylate (Eq. 78). (111)

5.4.4. Further Reactions of Initial Products under Morita–Baylis–Hillman Conditions

Methyl α -hydroxymethylacrylate is converted into its ether **42** (R = CO₂Et;n = 0) under the influence of DABCO (Eq. 79). (142) This and higher

ethers (42; R = CO₂R;n = 1,2) are thus formed as side products in the reaction of formaldehyde with acrylates, (142, 143) and presumably also with other activated olefins. α -Hydroxymethylacrylonitrile is converted into its ether (42; R = CN; n = 0) on attempted distillation. (74) Ether formation does not appear to be a problem with α -hydroxyalkylation products derived from other aldehydes. The formation of 4-oxo-5-methylene-1,3-dioxanes in the addition of aldehydes to the pantolactone ester of acrylic acid (Eq. 30) and of aliphatic aldehydes to aryl acrylates (Eq. 29) has been mentioned previously. Similarly, the formation of lactones (Eq. 48), acetals (Eqs. 49, 57), or ketals (Eq. 49) in products having ester, aldehyde, or keto groups at appropriate distances has already been mentioned, as has been the formation of cyclization products resulting from intramolecular Michael additions (Eqs. 59, 70, and 71). The formation of small amounts of 2:1 adducts of activated olefin and aldehyde is sometimes observed (76, 114) (Eq. 80). (114) In one reaction, loss of water from the diadduct occurred (Eq. 81). (144)

6. Comparison with Other Methods

When yields are reasonable, the catalyzed α -hydroxyalkylation and α -aminoalkylation reactions discussed in this chapter are unsurpassed in their simplicity, economy, and atom efficiency. However, they do have serious limitations, such as the lack of reactivity of most ketones and β -substituted activated olefins, and often poor diastereo- and enantioselectivty. The following is a survey of alternative methods for preparing Morita–Baylis–Hillman products from either the same or different starting materials.

The direct formation of anions from activated olefins with strong bases is feasible, but interception of these intermediates with electrophiles has to compete against their great propensity to polymerize. (145) Furthermore, the strongly basic conditions may induce aldol and/or Michael additions when enolizable aldehydes or ketones are employed. The anions of acrylonitrile and methyl acrylate add to benzophenone (Eq. 82); (146) addition of the former to protected sugar aldehydes has

also been reported. (147) Higher yields are often obtained from β -substituted vinyl anions (146, 148-153) (Eq. 82), (146) since they are less prone to polymerization. The formation and reaction of the anion of ethyl allenecarboxylate was mentioned previously (Eq. 32). Aluminum species obtained by addition of diisobutylaluminum hydride to methyl propiolate react with aldehydes to give α -hydroxyalkylacrylates. (154) Addition to ketones requires Lewis acid catalysis (154, 155) (Eq. 83); (154) alkyl

$$HC \equiv CCO_2 Me \xrightarrow{1. i-Bu_2 AIH, THF, \\ HMPA, 0^{\circ}, 1 h}_{2. Cyclohexanone, \\ BF_3 \cdot Et_2 O} OH$$
(72%) (83)

ethynyl ketones perform poorly in this reaction. A variation of this approach is shown in Eq. 84. (156) α -Hydroxyalkylacrylates are produced by reaction of

acetylenic alcohols (Eq. 85) (157) or acetates (158) with nickel carbonyl in ethanol. The cuprate derived from methyl α -bromoacrylate reacts readily with ketones and

$$HC \equiv CCH_2OH \xrightarrow{Ni(CO)_4, CO, EtOH} OH$$
(52%) (85)

aldehydes, including α , β -unsaturated ones (Eq. 86). (159) For references on the generation and reactivity of other α -metal derivatives of acrylic esters, see ref. 160.

The titanium species generated by the reaction of ketene (alkyl)(trimethylsilyl) acetals with ethyl propiolate react with aldehydes or ketones to give β -substituted α -hydroxyalkylacrylates (Eq. 87). (160) α -Anions of acrylates, acrylonitrile, and

α, β-unsaturated ketones can be generated from the corresponding α -trimethylsilyl derivatives with fluoride ion; (161-163) both β-substituted activated olefins and ketones can be employed (Eq. 88). (161)

$$n-C_7H_{15} \xrightarrow{\text{SiMe}_3} + Me_2CO \xrightarrow{Bu_4N^+F^-, \text{THF},}_{-15^\circ, \text{ to rt, 1 h}} \xrightarrow{n-C_7H_{15}} CN \xrightarrow{(22\%)} (88)$$

Temporary protection of the activating group in α , β -unsaturated aldehydes, (164) ketones, (165, 166) and esters (167) as the acetal, ketal, or orthoester, respectively, permits generation of the vinyl anion from the corresponding bromo compound. After addition of an electrophile, the activating group is liberated by acid treatment (Eq. 89). (165) α -Hydroxyalkylation products of phenyl vinyl sulfone and phenyl

vinyl sulfoxide are accessible by a related approach involving lithiation of phenyl vinyl sulfide followed by addition of an aldehyde and oxidation (Eq. 90). (81) Alternatively,

the double bond in an activated olefin is temporarily protected, for instance, by addition of a secondary amine. The resulting β -amino compound is then subjected to an aldol condensation, (119, 168-174) and the protecting group is removed by Hofmann elimination of the quaternary iodide, usually by use of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), or by Cope elimination. (119, 171) The hydroxy group usually needs to be protected to avoid retroaldol reactions. The example of Eq. 91 (119) shows the preparation of an α -hydroxyalkylation product of dimethylacrylamide

which is not accessible by a Morita–Baylis–Hillman reaction. The method can also be applied to the synthesis of β -substituted olefins. (173, 175) Use of prolinol as a temporary protecting group and chiral auxiliary leads to products with fair diastereoselectivity. (173, 175) An analogous approach permits access to α -aminoalkylation products (Eq. 92). (136) The thiophenyl group has also been

employed as a temporary protecting group (Eq. 93). (176) A variation of this approach (177, 178) is shown in Eq. 94. (177) A chiral tolylsulfoxide group can be

employed in place of the phenylthio group in this sequence; (179) in this case a Grignard reagent is used as the base, and elimination of sulfoxide is accomplished by thermolysis. In another variation, (180) a preformed enolate in the form of a (methylthio) (methyl)ketene acetal is employed in a Lewis acid catalyzed aldol reaction.

A nitro group (Eq. 95) (181) or a hydroxy group (182-184) (Eq. 96) (182) can serve as a temporary protecting group of the double bond as well. The latter approach takes

advantages of the different reactivities of the primary and secondary hydroxy groups in the intermediate. This is also used in a variation shown in Eq. 97, (185) which leads to enantiomerically pure α -hydroxyalkylacrylates.

An approach to 2-hydroxyalkylacrylonitriles employs glycidic esters as starting materials (Eq. 98). (186)

The tandem β -addition/ α -functionalization strategy (187) has been applied to

the preparation of α -hydroxyalkylation and α -aminoalkylation products of activated olefins (Eq. 99). (188) With α , β -unsaturated ketones, trimethylsilylamines give higher yields than the titanium reagents. (188) Organoaluminum reagents of type R₂AIX (X = PhS, PhSe, and I) have also been used in this type of reaction. (189)

Conditions are mild enough to permit use of butenolide as a substrate. Diethylaluminum iodide appears to be the reagent of choice because of the ease of hydrogen iodide removal in the second step (Eq. 100). (189) The second step proceeds spontaneously

without the addition of a base with α , β -unsaturated ketones. (189-191) Other reagents that are used in the α -hydroxyalkylation of α , β -unsaturated ketones

include trimethylsilyl triflate with dimethyl sulfide (192) or with pyridine, (193) (phenylseleno)dialkylboranes, (194) and (trimethylsilyl)(phenyl)selenide catalyzed by trimethylsilyl triflate. (195) Catalysis of the last reaction by a chiral borane provides α -hydroxyalkylated α , β -unsaturated ketones in high enantiomeric excess. Trimethylsilyl phenyl sulfide gives somewhat lower yields but higher enantioselectivities (Eq. 101). (103) Elimination of the benzenethiol is achieved by oxidation with *m*-chloroperoxybenzoic acid followed by heating to 130–150°; in the selenium series this is achieved by treatment with hydrogen peroxide at room temperature. Little or no recemization occurs in either variant.

Acetals of α -formylcrotononitrile derivatives are obtained by addition of sodium methoxide and aromatic aldehydes to β -ethoxyacrylonitrile (Eq. 102). (196)

ArCHO + EtO NaOMe MeO OMeAr = 3,4,5-Me₃C₆H₂ (102)

The approach depicted in Eq. 103 involves an ene reaction of singlet oxygen and permits access to both esters and amides of α -hydroxyalkylacrylic acids. (197-202)

Derivatives of α -hydroxymethylacrylic acid can be obtained according to Eqs. 104 (203) and 105. (204, 205)

Ethyl 2-hydroxymethylacrylate is also prepared by a Wittig–Horner reaction of triethyl phosphonoacetate with formaldehyde. (206, 207) The corresponding acid is obtained by heating diethyl bis(hydroxymethyl)malonate with sulfuric acid. (208) Diethyl 2-(hydroxymethyl)vinylphosphonate, which is not accessible by the Morita–Baylis–Hillman reaction (Table VII), is formed in the reaction of tetraethyl methylenediphosphonate with formaldehyde (Eq. 106). (209) The Wittig–Horner reagent

obtained by addition of thiophenoxide to triethyl methylenephosphonoacetate reacts with aldehydes to give an intermediate that can be converted into α -hydroxyalkylacrylates in two steps (Eq. 107). (210)

Products of formal intramolecular Morita–Baylis–Hillman reactions are obtained by an apparently general method depicted in Eq. 108. (211)

7. Synthetic Utility

Products of the Morita–Baylis–Hillman reaction contain three functionalities amenable to further manipulation: the hydroxy or amino group, the double bond, and the olefin-activating group. The following is a nonexhaustive overview of reactions of these functional groups. A more extensive treatment of this subject is found in a recent review. (22)

7.1. Reactions of the Hydroxy Group

Reaction of 2-hydroxyalkylacrylates with diethyl (212) or dimethylaminosulfur trifluoride (213) produces the fluorides without allylic rearrangement (Eq. 109). (212)

$$\frac{Ph}{4} OH \underbrace{Et_2NSF_3, CH_2CI_2}_{CO_2Me} \xrightarrow{Ph} 4 OH \underbrace{(53\%)}_{CO_2Me}$$
(109)

Ethyl 2-fluoromethylacrylate has also been prepared from the corresponding bromide with tetrabutylammonium fluoride in hexamethylphosphoric triamide. (206) With aluminum trichloride (from the acetate), (214) thionyl chloride, (11, 206) phosgene, (215) and *N*-chlorosuccinimide/dimethyl sulfide, (182, 216) the rearranged chlorides are obtained by an S_N2' mechanism. With thionyl chloride in the presence of pyridine, adduct **43** gives predominantly the unrearranged chloride (Eq. 110). (215)

Equimolar mixtures of rearranged and unrearranged chlorides are obtained from ethyl 2-(1-hydroxyethyl)acrylate and ethyl 2-(1-hydroxybutyl)acrylate with hexachloroacetone/triphenylphosphine; from ethyl 2-hydroxybenzylacrylate only the rearranged chloride is formed. (217) The rearranged bromides are formed by treatment of 2-hydroxyalkylacrylates with hydrogen bromide, with (40, 143, 218-223) or without (224) addition of concentrated sulfuric acid. Other reagents that accomplish this transformation are *N*-bromosuccinimide/dimethyl sulfide, (4, 5, 73, 182, 216, 225-228) cupric bromide on silica, (229) and phosphorus tribromide. (207, 230-232) *N*-Bromosuccinimide/dimethyl sulfide is also used to convert 2-hydroxyalkylvinyl phenyl sulfones into the rearranged bromides (56, 233, 234) (Eq. 111). (56) Rearranged iodides are formed from

2-hydroxyalkylacrylates with hydrogen iodide in phosphoric acid (217) or from the corresponding bromides with sodium iodide in acetone. (206, 230) The synthesis of those 2-bromomethyl-3-arylacrylic acids that are not accessible by the above routes because the Morita–Baylis–Hillman reaction fails can be accomplished by the sequence of Eq. 112. (132)

The 2-haloalkyl derivatives of activated olefins are versatile intermediates. (235) Base-induced elimination of rearranged bromide 44 gives the cyclohexene diester 46 by Diels–Alder dimerization of the very reactive intermediate diene 45 (Eq. 113). (236) Reduction of the rearranged bromides with lithium triethylborohydride proceeds with allylic rearrangement to give 2-alkylacrylates (Eq. 114). (216) Reactions with anions of β -ketoesters, (4, 217, 220) phenylacetylide, (237) lithium enolates, (56) and organocuprates (56) have been described. Conversion of the allylic bromides into organometallic species and reactions of the latter with aldehydes or ketones have been described involving the following metals: zinc, (238-241) chromium, (223, 242) tin, (223, 243, 244) indium, (245) bismuth, (243) and palladium/tin (from

the alcohols). (246) Some of these reactions lead directly to α -methylene- γ -butyrolactones (223, 246) (Eq. 115). (223) Reaction of methyl 2-chloromethylbutenoate

with the salt CpMo(CO)₃Na is the first step in the preparation of a molybdenum complex of trimethylenemethane. (247) Reaction of the rearranged bromides with alkoxides (203, 231, 237, 248) gives the ethers of the original Morita–Baylis–Hillman adducts; with more than one equivalent of the alkoxide the Michael adduct **48** is formed (Eq. 116). (237) Reaction of bromide **47** with sodium acetate in refluxing

methanol, (228) on the other hand, proceeds without allylic rearrangement as does the reaction of the sodium salt **49** with oxygen, sulfur, and carbon nucleophiles (Eq. 117). (237) Unrearranged products are often obtained from 2-bromomethylcinnamates;

Br,	→ x.	CO ₂ H	
Conditions	х	Yield (%)	
NaOMe, MeOH, rt, 16 h	MeO	(100)	(117)
PhONa, MeOH, rt, 16 h	PhO	(83)	
PhSNa, MeOH, rt, 16 h	Phs	(94)	
<i>n</i> -BuLi, THF, –78°, 5 h	<i>n</i> -Bu	(70)	
<i>t</i> -BuLi, Et ₂ O, -78° to rt, 1 h	t-Bu	(—)	
$(PhC \equiv C)_2Mg$, THF, 0° to rt, 1 h	PhC≡C	(66)	

examples are the reactions with sodium sulfite (40) and the potassium salt of *tert*-butylhydroperoxide (Eq. 118). (230) Amines add to give S_N2 and/or S_N2' products depending on the amine (218, 249) and solvent (Eq. 119). (218) Amines **50** are

slowly converted into the more stable isomers **51**, (56, 249) especially in polar solvents or in the presence of excess amine. (249) Amines of type **50** are also accessible via phenylselenium species. (225) Amines **51** where R is phenyl can also be prepared from the alcohols by treatment with phenyl isocyanate followed by cesium fluoride induced decarboxylation. (129) Amines **50** and **51** can be converted into methylene- and alkylidene- β -lactams, respectively. (218) Reaction of bromide **47** with sodium benzenesulfinate at low temperature gives the S_N2' product which rapidly isomerizes at room temperature (230, 250) (Eq. 120). (250) With thiolates, only the S_N2 products are isolated from bromides of type **47**. (56, 230) Wittig reagents can be prepared from the allylic bromides and triphenylphosphine; (251) the chlorides and trialkyl phosphites give either S_N2 or S_N2' products. (11, 215) The bromine can be replaced by a trimethylsilyl group with trimethylsilane in the presence of cuprous iodide. (216)

Elimination of the hydroxy group from Morita–Baylis–Hillman products is accomplished with acetic anhydride and pyridine at reflux (17) or by treatment of a derivative, such as the methanesulfonate, with a base. The very reactive dienes so obtained often dimerize in a Diels–Alder fashion (124, 252, 253) (Eq. 113), but can be isolated (234, 254) or trapped with an external diene or dienophile (124, 255) or internal dienophile (Eq. 121) (256)

 α -Hydroxyalkylacrylic acids can be cyclized to methylenepropiolactones (Eq. 122). (199, 257) The intermediate formation of acetals from α -hydroxyalkylacrylates

and aldehydes has been mentioned previously (Eq. 29). Friedel–Crafts reaction of α -hydroxyalkylacrylates or their acetates with benzene proceeds with allylic rearrangement (214, 258) (Eq. 123). (258) With phenols, coumarin derivatives are

formed (Eq. 124). (259) Substrates with ester groups in the side chain can be cyclized to give lactones (Eq. 125). (125)

Unrearranged acetates of α -hydroxyalkylated activated olefins can be prepared by the action of acetyl chloride in the presence of a base. Acetates derived from aromatic aldehydes (R = Ar) are rearranged to the isomeric acetates by DABCO (129, 260) (Eq. 126) or a number of other reagents such as benzyltriethylammonium chloride

with cesium fluoride, potassium fluoride on alumina, or potassium carbonate at 80° (129) Acetates **52** are reactive intermediates which can be used in S_N2' substitution reactions such as the reduction (50, 216, 227, 261) shown in Eq. 127 (216) to give olefins that are isomeric to those obtained in Eq. 114. Other

$$\stackrel{n-\Pr}{\longrightarrow} OAc \qquad \xrightarrow{\text{LiBEt}_3, \text{ THF},} \qquad \stackrel{n-\Pr}{\longrightarrow} \qquad (84\%) \qquad (127)$$

nucleophiles employed in S_N2' reactions with acetates **52** include anions of β -diketones, (262, 263) cyanoacetic ester, (262) nitroalkanes, (262) Grignard reagents, (122, 264-266) ammonia, (129, 231) primary (129, 131) and secondary amines, (129) sodium azide, (129) triethyl phosphite, (267) and the complex Bu₃SnCuLiBr·Me₂S. (268) The stereochemical outcome of the reaction with magnesium bromide depends on the olefin-activating group (Eq. 128). (269)

Treatment of 2-hydroxyalkylacrylates with carboxylic acids under Mitsunobu conditions gives almost exclusively the S_N2' products. (226, 228) In a transformation involving two S_N2' reactions, the α -substituted acrylates **54** are obtained via thioether **53** (Eq. 129). (270) The mixed carbonates **55** are used in palladium-catalyzed carbonylation reactions (Eq. 130). (119, 271) Phenyl ethers (272) and vinyl

ethers (272-274a) have been subjected to the Claisen rearrangement (Eq. 131). (274) α -Hydroxyalkylacrylates and α -hydroxyalkylacrylonitriles react with dialkyl chlorophosphites to give phosphonates by an Arbuzov rearrangement. (12, 275) The latter can be used in Wittig–Horner reactions (Eq. 132). (275)

Oxidation of the hydroxy group to give highly reactive doubly activated olefins has been accomplished with Jones reagent (Eq. 133). (43, 80) Pyridinium chlorochromate

on silica is much less effective. (43) Methyl 2-hydroxyalkylacrylates have also been converted into the corresponding keto compounds by temporarily protecting the double bond as the Diels–Alder adduct with anthracene. (9) The adduct of acetaldehyde with acrylonitrile could not be oxidized with a number of powerful oxidizing agents, (49) but its Michael adduct with methanol can be oxidized with Jones reagent. Elimination of methanol is then accomplished by thermolysis with phosphorus pentoxide to give 2-acetylacrylonitrile, which polymerizes on exposure to air or moisture. (276)

7.2. Reactions of the Amino Group

Aminoketone **56** is converted into diene **57** by the sequence of reactions shown in Eq. 134. (135) α -Aminoalkylacrylates can be cyclized to give methylene- β -lactams. (218)

7.3. Reactions of the Double Bond

Additions to the double bond in Morita–Baylis–Hillman adducts give rise to products that are formally those of an aldol reaction. Catalytic hydrogenation and other methods of saturating the double bond have been studied extensively (Eq. 135). (277, 278) The substrates investigated include esters ($R^2 = CO_2R^3$, X = O), (85, 105, 203, 279-285)

α, β -unsaturated ketones (R² = COMe, X = O), (19, 286) phenylsulfoxides [R² = PhS(O); X = O], (81) and phenyl sulfones [R² = PhS(O)₂; X = O], (81) as well as α -aminoalkylation products (R² = CO₂R³, X = NR⁴). (109, 136, 138) Addition of bromine to the double bond of 2-hydroxyalkylacrylates (178, 287) or their acetates (287) proceeds readily in high yield (Eq. 136). (178) Reaction of the dibromides

with a variety of bases gives bromoepoxy esters, (287) or, with prior protection of the hydroxy group, β -bromoacrylates. (178, 287) A tetrahydrofuran derivative is obtained on treatment of ester **58** with iodine (Eq. 137). (90) Michael additions of

the anions of dialkyl malonate, (127, 288) thiophenol, (185) and organocuprates (288a) to the double bond of Morita–Baylis–Hillman products have been reported. Reaction with ammonia leads to secondary or tertiary amines; (289) with primary amines, (108, 123, 290-292) precursors to β -lactams are obtained (Eq. 138). (291) Secondary

amines can also be added. (32) Addition of secondary amines or hydrazines to 2-hydroxyalkylacrylonitriles derived from α -ketoesters leads directly to heterocycles (Eq. 139), (293) as does the reaction of 2-hydroxyalkylacrylates with hydrazine (Eq. 140). (294) Addition of hydrazine and mono- and disubstituted hydrazines to

simple 2-hydroxyalkylacrylonitriles also leads to heterocycles. (292, 293) Morita–Baylis–Hillman adducts of 2-pyridinecarboxaldehyde can be cyclized to indolizines (Eq. 141); (113) the adduct of 2-pyridinecarboxaldehyde to methyl vinyl ketone

cyclizes slowly at room temperature (Eq. 59). The reaction sequence shown in Eq. 142 leads to the antibacterial trimethoprim. (130) Vicinal dihydroxylation

of the double bond has been carried out with catalytic osmium tetroxide in conjunction with *N*-methylmorpholine *N*-oxide (NMO) (164, 295) (Eq. 143) (295) or

 $\stackrel{n-C_9H_{19}}{\longrightarrow} \stackrel{OH}{\longrightarrow} \stackrel{OSO_4, NMO}{\longrightarrow} \stackrel{n-C_9H_{19}}{\longrightarrow} \stackrel{OH}{\longrightarrow} \stackrel{(96\%) > 92\% \text{ de}}{(143)}$

hydrogen peroxide. (294a) Epoxidation is achieved with a variety of reagents, including *m*-chloroperoxybenzoic acid, (212) sodium hypochlorite, (128) hydrogen peroxide in base, (190) lithium *tert*-butylhydroperoxide, (152) and Katsuki–Sharpless reagents. (39, 190) The last fail to epoxidize 2-hydroxyalkylacrylonitriles. (190) Aziridination of the activated double bond has also been reported. (296) Radical additions have been carried out to the double bonds of 2-hydroxyalkylacrylates or the corresponding acids, (297-304) 2-hydroxyalkylacrylonitriles, (305) and 2-hydroxyalkylenones. (302) A synthesis of β -lactams is based on radical additions to 2-aminoalkylacrylates (Eq. 144). (306) Additions of benzonitrile oxide, (307, 308) diazomethane, (308) and nitrilimines (307)

appear to be the only 1,3-dipolar cycloadditions to the double bond of Morita–Baylis–Hillman products reported so far. The only known Diels–Alder reactions involving these substrates appear to be the dimerization of 2-hydroxyalkylenones (Eq. 145) (309) and the previously mentioned addition to anthracene. (9)

The homo or copolymerization (310) of 2-hydroxyalkylacrylates, (3, 10, 23, 213, 311-314) 2-hydroxyalkylacrylonitriles, (3, 10, 15, 213, 313, 315-317) and 2-hydroxyalkylenones (213) have been reported.

7.4. Reactions of the Activating Group

Reduction of the ester group in 2-hydroxyalkylacrylates to give the diol is carried out with aluminum hydride followed by sodium borohydride (235) or by di-isobutylaluminum hydride with (318-321) or without (322) protection of the hydroxy group. Direct reduction of the ester to the aldehyde does not appear to have been reported. It is achieved by oxidation of the monoprotected diol. (319, 320) Acetates of 2-hydroxyalkylacrylates are reduced by lithium

ethoxyaluminum hydride with loss of the acetoxy group (261, 323) (Eq. 146). (261) Addition of Grignard reagents

to 2-hydroxyalkylacrylates gives ketones and/or tertiary carbinols. (288a) α -Hydroxyalkylacrylic acid are readily made by base hydrolysis; they can be converted into methylenedioxanones (Eq. 147), (303, 324) which on radical additions and

treatment with an alcohol give *threo* aldol products. Methods exist for the reductive removal of a phenylsulfonyl group attached to a double bond, (325, 326) but it remains to be determined whether they can be applied successfully to addition products of electrophiles to phenyl vinyl sulfone.

8. Experimental Conditions

principal experimental hurdle to overcome in amine-catalyzed The Morita–Baylis–Hillman reactions is the low rate. The simplest remedy appears to be the use of stoichiometric amounts of DABCO or the more reactive 3-hydroxyquinuclidine. Employing an excess of either the activated olefin or the electrophile is also beneficial; the choice will depend on the cost and ease of removal of the reagent used in excess. A more than sixfold excess should be avoided since the dilution effect leads to a reduction of the rate. (42) Ease of dimerization of the activated olefin by the catalyst system used is another consideration. Tables XIII-A-D list conditions and yields of dimerizations with catalysts commonly used in the Morita-Baylis-Hillman reaction. Addition of small amounts of proton source such а as methanol. 1,1,1,3,3,3-hexafluoro-2-propanol, or acetic acid increases rates, as do certain salts. Solvents usually reduce rates but they may be necessary with poorly soluble substrates (see discussion of solvents in the section on Reaction Parameters). Use of tetrahydrofuran leads to cleaner products in additions to α , β -unsaturated ketones and acrylonitrile. (41) Carrying out the reaction at low temperatures (63) (Eq. 20) should be considered. Elevated temperatures also increase reaction rates, but polymerization of the activated olefin may become a problem. Addition of small amounts (1 mol % or less) of a polymerization inhibitor such hydroquinone, 4-methoxyphenol, as 5-tert-butyl-4-hydroxy-2-methylphenyl sulfide, (41) or phenothiazine is essential in that case, especially if the inhibitor added to commercial samples of activated olefins has been removed by prior distillation or other purification methods. Phosphine catalysts such as tributylphosphine may provide higher reaction rates than tertiary amines. If the equipment is available, application of high pressure should be considered. Larger scale (>1.5 mL) experiments involving acrylonitrile (and possibly of other activated olefins) under high pressure require special precautions because polymerization of this monomer is highly exothermic. (41) Microwave irradiation also appears to increase rates considerably, but the reactions have to be carried out in sealed vessels, and provisions (77) should be made to guard against the possibility of explosions. (78) The order of addition can be important in special cases. Thus slow addition of α -keto esters to the catalyst mixed with an excess of acrylonitrile (134) leads to much improved yields as compared to mixing all reactants at the outset. Similar improvements are observed when α , β -unsaturated ketones are added slowly to tetrahydrofuran solutions of the electrophile and catalyst, (37, 117) although other workers report satisfactory yields without this precaution. (140)

The catalyst should be removed during the isolation procedure to reduce the amount of product that needs to be purified and to prevent the reverse reaction

when purification is effected by distillation or sublimation at elevated temperatures. For amine catalysts all that is needed is an acid wash. Excess aldehydes or aldol side products can be removed as the water-soluble bisulfite complexes. (49)

The cautionary note in the Introduction should be heeded.

9. Experimental Procedures

9.1.1. Methyl 3-Hydroxy-2-methylenepentanoate (DABCO-Catalyzed Reaction of an Aliphatic Aldehyde with Methyl Acrylate) This preparation is described in *Organic Syntheses*. (281)

9.1.2. Ethyl 3-Hydroxy-2-methylene-3-phenylpropionate (Addition of an Aromatic Aldehyde To Ethyl Acrylate Catalyzed by 1,3-Diaminopropane/4-Methoxyphenol) (44)

A mixture of 20 g (0.2 mol) of ethyl acrylate, 29.7 g (0.28 mol) of freshly purified benzaldehyde, 2.2 g (0.03 mol) of 1,3-propanediamine, and 7.4 g (0.06 mol) of 4-methoxyphenol was stirred at room temperature for 36 hours, at which time gas chromatography verified the absence of ethyl acrylate. The mixture was chromatographed directly on silica (elution with hexane/ethyl acetate) to give 34.2 g (83%) of the title product. ¹H NMR δ 1.2 (t, *J* = 7 Hz, 3 H); 3.0 (br, 1 H); 4.13 (q, *J* = 7 Hz, 2 H); 5.40 (br, 1 H); 5.7 (s, 1 H); 6.2 (s, 1 H); 7.25 (s, 5 H). IR 3450, 1710, 1270, 1150, 1040, 700 cm⁻¹. In the absence of 4-methoxyphenol, the reaction required 216 hours to go to completion.

9.1.3. Ethyl 3-Hydroxy-2-vinylidenepentanoate (DABCO-Catalyzed Reaction of an Aliphatic Aldehyde with an Allenic Ester) (112)

To a solution of 44 mg (0.39 mmol) of DABCO in 1 mL of dry ether under argon at – 6° was added 0.32 g (2.82 mmol) of ethyl 2,3-butadienoate followed by 0.16 g (2.76 mmol) of propionaldehyde. The bath was removed, the mixture was stirred for 16 hours at room temperature and poured into water. The product was extracted into ether, the extracts were washed with dilute hydrochloric acid and water and dried with magnesium sulfate. Removal of the solvent gave 194 mg (42%) of the title compound. ¹H NMR (CDCl₃) δ 5.11 (s, 1 H), 5.08 (s, 1 H), 4.16 (m, 3 H), 2.78 (s, 1 H), 0.93 (q, *J* = 7 Hz, 3 H); ¹³C NMR (CCl₄) δ 10.1, 14.1, 28.3, 61.1, 70.7, 80.5, 102.9, 167.0, 212.3; IR (neat) 3500, 1965, 1941, 1710, 1260 cm⁻¹. Anal. Calcd. for C₉H₁₄O₃: C, 63.51; H, 8.29. Found: C, 63.25; H, 8.16.

9.1.4. 2-Hydroxymethylacrylonitrile (DABCO-Catalyzed Reaction of Aqueous Formaldehyde with Acrylonitrile) (46)

A mixture of 159 g (3.0 mol) of acrylonitrile , 225 g (3.0 mol) of 40% aqueous formaldehyde solution, and 12.5 g (0.11 mol) of DABCO was stirred at room temperature for 48 hours. The volatile components were removed under 10 mm vacuum and the residue was dissolved in 400 mL of ether. The solution was washed with 70 mL of 8% hydrochloric acid and 70 mL of brine and dried with sodium sulfate. Removal of the solvent and fractional distillation of the residue gave 164 g (66%) of the title compound, bp 84–86° (0.2 mm).

EtCHO + $CN \xrightarrow{(C_6H_{11})_3P, \text{ dioxane,}}_{N_2, \text{ reflux, } 12 \text{ h}} \xrightarrow{Et OH}_{CN}$

9.1.5. 2-Methylene-3-Hydroxypentanenitrile (Reaction of an Aliphatic Aldehyde with Acrylonitrile Catalyzed by a Phosphine) (7)

To a refluxing solution of 5.3 g (0.1 mol) of acrylonitrile and 11.6 g (0.2 mole) of propionaldehyde in 20 mL of dioxane was added under nitrogen during 15 minutes a solution of 0.3 g (1.1 mmol) of tricyclohexylphosphine in 10 mL of dioxane. Reflux was continued for 12 hours, the solvent was removed and the

residue was distilled to give 3.88 g (35%) of the title compound, bp 60–61° (0.4 mm). ¹H NMR δ 5.98 (s, 2 H), 4.12 (d, *J* = 6.5 Hz, 1 H), among others; IR 2229, 1623 cm⁻¹. Anal. Calcd. for C₆H₉NO : C, 64.84; H, 8.16; N, 12.60. Found: C, 64.65; H, 8.19; N, 12.52.

9.1.6. (E)- and (Z)-2-(1-Hydroxyethyl)-2-butenenitrile (DABCO-Catalyzed Reaction of an Aliphatic Aldehyde with Crotononitrile Under Pressure) (49)

A mixtutre of (*E*)- and (*Z*)-crotononitrile (5 mL, 61.4 mmol), acetaldehyde (3.45 mL, 61.4 mmol), and DABCO (0.34 g; 3 mmol) was placed in a poly(tetrafluoroethylene) cylinder and pressurized to 9 kbar at 50° for 18 hours. Ether (20 mL) was added, and the solution was washed with 10 mL of 10% hydrochloric acid and dried with magnesium sulfate, and the volatiles were removed under vacuum. Flash chromatography of the residue and elution with ether/petroleum ether (2:1) gave 5.1 g (72%) of the *Z* isomer of the title compound followed by 1.1 g (16%) of the *E* isomer. *Z* isomer: ¹H NMR(C₆D₆) δ 1.26 (d, *J* = 3.3 Hz, 3 H), 1.63 (d, *J* = 3.5 Hz, 3 H), 3.34 (br s, 1 H), 4.17 (q, *J* = 3.3 Hz, 1 H), 6.09 (q, *J* = 3.5 Hz, 1 H); IR 3440, 2225, 1650 cm⁻¹; HRMS calculated for C₆H₉NO : 111.06841; found: 111.0675. *E* isomer: ¹H NMR(C₆D₆) δ 1.25 (d, *J* = 3.5 Hz, 1 H); IR 3440, 2225, 1650 cm⁻¹; HRMS calculated for C₆H₉NO : 111.06841; found: 111.0675.

9.1.7. 3-Hydroxy-4-methyl-2-methylene-4-pentenenitrile (DABCO-Catalyzed Reaction of an Olefinic Aldehyde with Acrylonitrile) (127)

A mixture of 0.70 g (10 mmol) of methacrolein, 0.53 g (10 mmol) of acrylonitrile , and 0.17 g (1.5 mmol) of DABCO was stirred under nitrogen in the dark for 4 days. Methylene chloride (20 mL) was added, and the solution

was washed with two 20-mL portions of 1 N hydrochloric acid. The organic phase was dried with sodium sulfate, the solvent was removed, and the residue was chromatographed on silica. Elution with hexane/ethyl acetate (4:1) gave 0.82 g (67%) of the title compound as an oil. ¹H NMR(CDCl₃) δ 6.06 (s, 1 H), 6.02 (s, 1 H), 5.14 (s, 1 H), 5.04 (s, 1 H), 4.65 (s, 1 H), 2.40 (br, 1 H), 1.69 (s, 3 H); ¹³C NMR(CDCl₃) δ 142.5, 130.4, 124.8, 116.7, 114.8, 75.7, 17.2; MS *m*/z 123 (9%), 108 (35%).

9.1.8. 2-Methylene-3-hydroxyheptanenitrile (Reaction of an Aliphatic Aldehyde with Acrylonitrile Catalyzed by

Tributylphosphine/Triethylaluminum) (64)

To a solution of 203 mg (1 mmol) of tributylphosphine, 0.26 mL (0.5 mmol) of a 1.9 M solution of triethylaluminum in hexane, and 1 mL of methylene chloride in a pressure bottle was added under nitrogen a solution of 266 mg (5 mmol) of acrylonitrile and 859 mg (10 mmol) of pentanal in 10 mL of methylene chloride. The bottle was closed and heated to 80° for 22 hours. The solution was washed with 3 N hydrochloric acid and brine, and the solvent was removed. Chromatography of the residue on silica gel and elution with benzene/ethyl acetate (20:1) gave 0.19 g of the aldol product, 2-propyl-2-heptenal, followed by 628 mg (90%) of the title compound. ¹H NMR δ 6.09 (br, 2 H), 4.27 (br, 1 H), 1.1–2.0 (m, 6 H), 0.7–1.1 (m, 3 H); ¹³C NMR δ 13.9, 22.4, 27.2, 35.5, 72.2, 117.1, 127.1, 129.8; IR 3670–3100, 2240, 1628 cm⁻¹. Anal. Calcd. for C₈H₁₃NO : C, 69.03; H, 9.41. Found: C, 68.96; H, 9.63.

9.1.9. 4-Hydroxy-3-methylene-2-butanone (Reaction of Formaldehyde with 3-Buten-2-one Catalyzed by Triphenylphosphine) (61)

A mixture of 7.0 g (0.1 mol) of 3-buten-2-one, 6.0 g (0.2 mol) of formaldehyde (of unspecified type), 1.0 g (4 mmol) of triphenylphosphine, and 10 mL of benzene was stirred under nitrogen at 30° for 18 hours and poured into dilute hydrochloric acid. The product was extracted into ether, and the extracts were

washed successively with brine, dilute sodium bicarbonate solution, and brine, and then dried with sodium sulfate. Removal of the solvent and distillation of the residue gave 3.4 g (34%) of the title product, bp 70–71° (8 mm). IR 3400, 1675 cm⁻¹; ¹H NMR δ 2.30 (s, 3 H), 4.16 (s, 2 H), 5.96 (s, 1 H), 6.01 (s, 1 H); MS *m*/z 100.

9.1.10. 4-Hydroxy-3-methylene-2-hexanone (Reaction of an Aliphatic Aldehyde with 3-Buten-2-one Catalyzed by a Rhodium Complex) (19)

A mixture of 264 mg (3.8 mmol) of 3-buten-2-one, 484 mg (7.4 mmol) of propanal, 53 mg (0.89 mmol) of 2-propanol, and 36 mg (0.032 mmol) of RhH(PPh₃)₄ was placed under argon in a Carius tube which was cooled, evacuated, sealed under vacuum, and heated in a 40° bath for 40 hours. The product was concentrated under reduced pressure, bulb-to-bulb distilled, and the crude product was purified further by chromatography on silica gel. Elution with hexane/ethyl acetate (4:1) gave 376 mg (78%) of the title product as a colorless oil. ¹HNMR δ 5.97 (s, 1 H), 5.90 (s, 1 H), 4.29 (t, *J* = 5.3 Hz, 1 H), among others; IR 3525, 1665 cm⁻¹; MS *m/z* 128, 99 (base peak), among others.

9.1.11. 2-(Benzenesulfonyl)-1-(3-pyridyl)-2-propenol (DABCO-catalyzed Reaction of a Heterocyclic Aldehyde with a Sulfone) (80)

DABCO (60 mg, 0.5 mmol) was added to a mixture of 840 mg (5 mmol) of phenyl vinyl sulfone and 1.6 g (15 mmol) of 3-pyridinecarboxaldehyde and the mixture was left at room temperature for 24 hours. Excess aldehyde was removed under vacuum and the residue was purified by flash chromatography on silica gel. Elution with ethyl acetate/ether (1:1) and crystallization from ether gave 630 mg (46%) of the title compound, mp 121°. ¹H NMR[(CD₃)₂SO] δ 8.53–8.52 (m, 2 H), 7.74–7.40 (m, 6 H), 7.18 (m, 1 H), 6.59 (s, 1 H), 6.42 (s,

1 H), 6.36 (br s, 1 H), 5.50 (br s, 1 H); 13 C NMR[(CD₃)₂SO] δ 152.8, 148.7, 148.6, 139.4, 136.4, 134.5, 133.5, 129.2, 127.6, 126.4, 123.1, 66.1; IR (CHCI)₃ 1320, 1310, 1165, 1145, 690 cm⁻¹; HRMS calculated for C₁₄H₁₃NO₃S : 275.0616; found: 275.0614.

MeCHO +
$$P(O)(OEt)_2 \xrightarrow{DABCO,} P(O)(OEt)_2$$

9.1.12. Diethyl (2-Hydroxy-1-methylenepropane)phosphonate (DABCO-Catalyzed Reaction of an Aliphatic Aldehyde with Diethyl Vinylphosphonate) (120)

To 3.28 g (20 mmol) of diethyl vinylphosphonate was added 0.97 g (22 mmol) of ethanal and 0.45 g (4 mmol) of DABCO and the mixture was stirred at room temperature for 7 days. Methylene chloride (50 mL) was added and the solution was washed with 20 mL of 1.5 M hydrochloric acid and saturated aqueous sodium bicarbonate solution. The solvent was removed and the residue was distilled to give 3.19 g (83%) of the title compound as an oil, bp 64° (0.65 mm). ¹H NMR δ 6.4 (m, 1 H), 5.9 (m, 1 H), 5.05 (d/q, *J* = 34.5/6.5 Hz, 1 H), 4.15 (two q, *J* = 7 Hz, 4 H), 1.3 (d, *J* = 6.5 Hz, 3 H), 1.28 (t, *J* = 7 Hz, 6 H).

9.1.13. 4-Chloro-4,4-difluoro-3-(chlorodifluoromethyl)-3-hydroxy-2-methy lene Butanenitrile (DABCO-Catalyzed Reaction of a Halo Ketone with Acrylonitrile) (115)

To a stirred mixture of 1.06 g (0.02 mol) of acrylonitrile and 0.22 g (2 mmol) of DABCO in 15 mL of dry tetrahydrofuran was added at 20° 4.0 g (0.02 mol) of 1,3-dichloro-1,1,3,3-tetrafluoropropan-2-one. The mixture was stirred for 5 hours, poured into 100 mL of 5% hydrochloric acid, and extracted with three 20-mL portions of methylene chloride. The extracts were washed with water to pH 7, and dried with magnesium sulfate. Removal of the solvent and crystallization of the residue from hexane gave 1.76 g (35%) of the title compound, mp 53–54°. ¹H NMR[(CD₃)₂CO)] δ 6.68 (s, 1 H), 6.82 (s, 1 H), 4.47 (s, 1 H); ¹⁹F NMR[(CD₃)₂CO)] δ -18.59 ppm (from external CF₃CO₂H);

¹³C NMR[(CD₃)₂CO)] δ92.2, 112.7, 115.1 126.1, 139.2. Anal. Calcd. for C₆H₄Cl₂F₄NO : C, 28.57; H, 1.19; N, 5.56. Found: C, 28.57; H, 1.21; N, 5.56.

9.1.14. Methyl 3,3-Dicarboethoxy-3-hydroxy-2-methylenepropanoate (DABCO-Catalyzed Reaction of a Keto Ester with Methyl Acrylate) (133)

A solution of 0.87 g (5 mmol) of diethyl ketomalonate, 0.43 g (5 mmol) of methyl acrylate, and 56 mg (0.5 mmol) of DABCO in 3.7 mL of tetrahydrofuran was allowed to stand at room temperature for 4 hours. Methylene chloride (25 mL) was added, and the solution was washed sequentially with dilute hydrochloric acid and aqueous sodium bicarbonate solution, and dried with sodium sulfate. Removal of the solvent and chromatography of the residue (hexane/ethyl acetate 4:1) gave 1.0 g (77%) of the title compound. ¹H NMR δ 6.42 (s, 1 H), 6.02 (s, 1 H), 4.56 (br, 1 H), 4.3 (q, *J* = 6 Hz, 4 H), 3.78 (s, 3 H), 1.32 (t, *J* = 6 Hz, 6 H); ¹³C NMR 13.35, 51.76, 62.41, 78.71, 127.59, 137.36, 162.39, 168.77; IR (neat) 3460, 1730, 1630 cm⁻¹.

9.1.15. 4-Dimethylamino-3-methylene-2-pentanone (Uncatalyzed Reaction of an Iminium Salt with 3-Buten-2-one) (135)

To a stirred solution of 10.5 g (103 mmol) of bis(dimethylamino)methane in 70 mL of acetonitrile was added dropwise with ice cooling 7.9 g (101 mmol) of acetyl chloride. The suspension was stirred at room temperature for 5 minutes, 8.5 g (125 mmol) of 3-buten-2-one was added, and stirring was continued at 40–45° until the mixture became homogeneous (20–30 minutes). The solvent was removed under vacuum at 20°, dry, cold ether (100 mL) was added, and the hydrochloride of the title compound was collected by filtration and washed with ether. The salt was further purified by dissolution in methylene chloride, filtration, and removal of the solvent to give 14.4 g (88%) of the hydrochloride of the title compound, mp 135°. ¹H NMR(CDCl₃) δ 2.40 (s, 3 H), 2.78 (s, 6 H),

4.02 (s, 2 H), 6.71 (s, 1 H), 6.99 (s, 1 H), 9.0 (br, 1 H). Anal. Calcd. for C₇H₁₄CINO : C, 51.38; H, 8.56; Cl, 21.71; N, 8.56. Found: C, 51.35; H, 8.66; Cl, 21.75; N, 8.55.

A solution of the salt (12 g) in 15 mL of water was added to a solution of 30 g of potassium carbonate in 30 mL of water, the mixture was extracted with four 20-mL portions of ether, and the solvent was removed from the dried (MgSO₄) ether extracts. Distillation of the residue gave 7.7 g (83%) of the title compound, bp 59–60° (15 mm), n^{20}_{D} 1.4485. ¹H NMR δ 2.15 (s, 6 H); 2.24 (s, 3 H), 3.12 (s, 2 H), 5.95 (s, 1 H), 6.07 (s, 1 H); ¹³C NMR δ 24.4, 43.6, 57.3, 124.6, 143.9, 197.6; IR 1640, 1690 cm⁻¹.

Ph_NTs +
$$CO_2Me \xrightarrow{DABCO,} 80^\circ, 17 h$$
 Ph_NHTs
CO_2Me

9.1.16. Methyl

2-Methylene-3-phenyl-3-(4-toluenesulfonylamino)propanoate (DABCO-Catalyzed Reaction of an Imine with Methyl Acrylate) (138)

A mixture of 337 mg (1.3 mmol) of benzaldehyde *N*-(4-toluenesulfonyl)imine, 112 mg (1.3 mmol) of methyl acrylate, and 15 mg (0.13 mmol) of DABCO was heated in a sealed tube to 80° for 17 hours. Unreacted methyl acrylate was removed under vacuum and the residue was taken up in chloroform (20 mL). The solution was washed with two 2-mL portions of 2 M hydrochloric acid and two 5-mL portions of water, and dried with sodium sulfate. Removal of the solvent and chromatography of the residue on silica gel (elution with ether/petroleum ether 1 : 1) gave 202 mg (45%) of the title compound, mp 80–81°. ¹H NMR δ 2.39 (s, 3 H), 3.58 (s, 3 H), 5.32 (d, *J* = 8.9 Hz, 1 H), 5.82 (d, *J* = 8.8 Hz, 1 H), 5.83 (s, 1 H), 6.21 (s, 1 H), 7.1–7.3 (m, 7 H), 7.66 (d, *J* = 8.3 Hz, 2 H). IR (film) 3250, 1720 cm⁻¹ Anal. Calcd. for C₁₈H₁₉NO₄S : C, 62.6; H, 5.5; N, 4.0. Found: C, 62.7; H, 5.6; N, 4.0.

10. Tabular Survey

An effort has been made to cover catalyzed α -hydroxyalkylation and α -aminoalkylation reactions of activated olefins completely through the middle of 1996, but omissions are probably inevitable. Tables I–VII list reactions of aldehydes with acrylates, acrylamides, acrylonitriles, acrolein, α , β -unsaturated ketones, vinyl sulfoxides, vinyl sulfones, vinylsulfonates, and diethyl vinylphosphonate. Some of these tables are subdivided further according to aldehyde type; the criterion is the group that the formyl function is *directly* attached to. Esters of glyoxylic acid are listed as aldehyde. Tables VIII–XI list additions of various electrophiles other than aldehydes to activated olefins. Table XII is devoted to intramolecular Morita–Baylis–Hillman reactions. Tables XIII-A–D, which are not exhaustive, list the dimerizations of the Morita–Baylis–Hillman reaction.

Within each table, entries are arranged according to increasing carbon count of the electrophile. In transition metal complexes, ligands are not included in the carbon count. Within groups with identical carbon count, entries are arranged in the order of increasing hydrogen count. For each electrophile, activated olefins are listed in the same order as that specified for the electrophiles. The symbols (+) and (–) next to ester substrates are the signs of rotations of the alcohols from which the esters were made.

The amounts listed in the conditions column in parentheses after the catalyst and other addends are in mole equivalents relative to the limiting substrate. A dash in this column indicates that no conditions have been reported. A dash in the yield column signifies that the product was isolated but no yield was given. A zero (0) in the yield column means that the reaction did not proceed under the conditions listed. When a reaction has been reported in more than one publication, the conditions producing the highest yield are given and the reference to that paper is given first. The following abbreviations are used:

Bn	benzvl
t-BOC	<i>tert</i> -butoxycarbonyl
Bz	benzoyl
CBZ	carbobenzyloxy
C_6H_{11}	cyclohexyl
DIOP	2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis-(diphenylphosphino)butane
DB	1,4-diazabicyclo[2.2.2]octane (DABCO)
HFI	1,1,1,3,3,3-hexafluoro-2-propanol

HMPAhexamethylphosphoric triamideHQ3-hydroxyquinuclidineTBDMS*tert*-butyldimethylsilylTBDPS*tert*-butyldiphenylsilylTftrifluoromethanesulfonyl (triflyl)THP2-tetrahydropyranylTMStrimethylsilylTs*p*-toluenesulfonyl

Table I-A. Reactions of Acrylates with Aliphatic and Alicyclic Aldehydes

View PDF

Table I-B. Reactions of Acrylates with Olefinic Aldehydes

View PDF

Table I-C. Reactions of Acrylates with Aromatic Aldehydes

View PDF

Table I-D. Reactions of Acrylates with Heterocyclic Aldehydes

View PDF

Table I-E. Reactions of Methyl Acrylate with Dialdehydes

View PDF

 Table I-F. Reactions of Allenic Esters with Aldehydes

View PDF

Table II-A. Reactions of Acrylamides with Aldehydes

View PDF

Table II-B. Reactions of Camphor Sultam Acrylate with Aldehydes

View PDF

Table III-A. Reactions of Acrylonitriles with Aliphatic and Alicyclic Aldehydes

View PDF

Table III-B. Reactions of Acrylonitrile with Olefinic Aldehydes
View PDF

Table III-C. Reactions of Acrylonitriles with Aromatic Aldehydes

View PDF

Table III-D. Reactions of Acrylonitrile with Heterocyclic Aldehydes

View PDF

Table IV. Reactions of α , β -Unsaturated Aldehydes with Aldehydes

View PDF

Table V-A. Reactions of α , β -Unsaturated Ketones with Aliphatic and Alicyclic Aldehydes

View PDF

Table V-B. Reactions of α , β -Unsaturated Ketones with Olefinic Aldehydes

View PDF

Table V-C. Reactions of α , β -Unsaturated Ketones with Aromatic Aldehydes

View PDF

Table V-D. Reactions of α , β -Unsaturated Ketones with Heterocyclic Aldehydes

View PDF

Table VI. Reactions of Vinyl Sulfoxides, Vinyl Sulfones, and Vinylsulfonates with Aldehydes

View PDF

Table VII. Reactions of Diethyl Vinylphosphonate with Aldehydes

View PDF

Table VIII. Reactions of Activated Olefins with Monoketones

View PDF

Table IX. Reactions of Activated Olefins with Polyketones

View PDF

Table X. Reactions of Activated Olefins with α -Ketoesters and α -Ketolactones

View PDF

Table XI. Reactions of Activated Olefins with Imines and Iminium Salts

View PDF

Table XII. Intramolecular Reactions

View PDF

Table XIII-A. Dimerization of Acrylates

View PDF

Table XIII-B. Dimerization of Acrylamides

View PDF

Table XIII-C. Dimerization of Acrylonitrile

View PDF

Table XIII-D. Dimerization of α , β -Unsaturated Ketones

View PDF

$\begin{array}{cccc} HCHO (prachemaladelyde) & & & & CO_{2}Me & DB (0.51), 657, 4.6, or 4.57, 14.8 & & & & & CO_{2}Me & I (2.57 & & I 4.3 & \\ & & & DB (0.05), 0.05, 0$	Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$	HCHO (paraformaldehyde)	CO ₂ Me	DB (0.05), 95°, 4 h, or 45°, 14 h	OH I (23) ^{<i>a</i>}	143
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			DB (0.03), rt, 10 d Me ₃ N (0.5), H ₂ O, 60°, 3 h $P(C_6H_{11})_3$ (0.01), dioxane,	I (66) ^b I (80) I (36)	142, 268 47 8
$\begin{array}{cccc} HCH0 \mbox{ (formalin)} & \frown \\ CO_3Me & DB \mbox{ (0.00)} \mbox{ H}_0 \mbox{ A8 h} & \mathbf{I} \mbox{ (75)} & \mbox{ 46, 22, 142, 311} \\ & & \\ I \mbox{ (17)} & & \\ I \mbox{ (17)} & & \\ I \mbox{ (17)} \mbox{ (17)} & \mbox{ (17)} & \\ I \mbox{ (17)} & & \\ I \mbox{ (17)} \mbox{ (17)} & \\ I \mbox{ (18)} \mbox{ (18)} \mbox{ (17)} & \\ I \mbox{ (18)} \mbox{ (18)} \mbox{ (17)} & \\ I \mbox{ (18)} \mbox{ (18)} \mbox{ (17)} & \\ I \mbox{ (18)} \mbox{ (18)} \mbox{ (12)} \mbox{ (18)} $	HCHO (gas)	CO ₂ Me	DB (0.07), EtOH, rt, 72 h	I (59)	46
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	HCHO (formalin)	CO ₂ Me	DB (0.06), H_2O , MeOH, π , 48 h	I (75)	46, 23, 142, 311
$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$		n	Me ₃ N (0.5), H ₂ O, air, 4-MeOC ₆ H ₄ OH (0.001), 40°, 6 h	I (72)	47
$\begin{array}{cccc} \operatorname{HCHO}(\operatorname{cyclohexamol}_{hemiacetal}) & & \operatorname{CO}_{2}\operatorname{Me} & \operatorname{DB}(0.07), \operatorname{cyclohexamol}, n, 70 h & 1 (45) & 46 \\ \end{array}$		n	DB (0.11), microwave flow reactor, 158-164°, 90 s	I (30)	74, 75
$\begin{array}{cccc} \text{HCHO} (formalin) & & & & & & & & & & & & & & & & & & &$	HCHO (cyclohexanol hemiacetal)	CO ₂ Me	DB (0.07), cyclohexanol, rt, 70 h	I (45)	46
$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$	HCHO (formalin)	CO ₂ Et	DB (0.1), H ₂ O, THF, rt, 36 h	OH I (80) CO ₂ Et	235, 46, 327
$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$		11	DB (0.11), microwave flow reactor, 150-175°	I (32)	74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		"	Me ₃ N (0.4), H ₂ O, air, 4-MeOC ₆ H ₄ OH (0.001), 80°, 2 h	I (89)	47
HCHO (formalin) $= \int_{0}^{0} \int_{2}^{0} \int_{2}^{0H}$ 1. Me;N (0.5), F.Pr2O, H2O, e40°. $= \int_{0}^{0} \int_{2}^{0} \int_{2}^{0H}$ (35) 47 HCHO (formalin) $= \int_{0}^{0} \int_{3}^{0H}$ DB (0.09), EtOH, rt, 72 h $= \int_{0}^{0} \int_{0}^{0H} \int_{3}^{0H}$ 46 HCHO (formalin) $= \int_{0}^{0} \int_{3}^{0H}$ DB (0.07), rt, 10 d $= \int_{0}^{0H} \int_{0}^{0H} \int_{3}^{0H}$ 142 HCHO (formalin) $= Co_{2}Bu \cdot n$ DB (0.07), rt, 10 d $= \int_{0}^{0H} \int_{0}^{0H} \int_{3}^{0H}$ 142 HCHO (formalin) $= Co_{2}Bu \cdot n$ DB (0.07), rt, 10 d $= \int_{0}^{0H} \int_{0}^{0H} \int_{3}^{0H}$ 142 HCHO (formalin) $= Co_{2}Bu \cdot n$ DB (0.07), rt, 10 d $= \int_{0}^{0H} \int_{0}^{0H} \int_{3}^{0H}$ 47 HCHO (formalin) $= Co_{2}Bu \cdot n$ DB (0.07), rt, 10 d $= \int_{0}^{0H} \int_{0}^{0H} \int_{3}^{0H}$ 47 HCHO (formalin) $= Co_{2}Bu \cdot n$ DB (0.07), rt, 10 d $= \int_{0}^{0H} \int_{0}^{0H} \int_{2}^{0H} \int_{3}^{0H}$ 47 HCHO (formalin) $= Co_{2}Bu \cdot n$ DB (0.07), rt, 10 d $= \int_{0}^{0H} \int_{0}^{0H} (-)$ 231 HCHO (formalin) $= \int_{0}^{0} \int_{2}^{0} \int_{2}^{0} DB$ DB (0.09), rt, 50 h $= \int_{0}^{0H} \int_{0}^{0H} \int_{0}^{0H} (-)$ 231 HCHO (formalin) $= \int_{0}^{0} \int_{0}^{0} \int$	HCHO (paraformaldehyde)	CO ₂ Et	Me ₃ N (0.5), H ₂ O, 4-MeOC ₆ H ₄ OH (0.001), 50°, 6 h	I (90)	47
HCHO (formalin) $= \int_{0}^{0} (-f_{3}^{OH})^{OH}$ DB (0.09), EOH, r, 72 h $= \int_{0}^{0} (-f_{3}^{OH})^{OH}$ 46 HCHO (paraformaldehyde) $= CO_{2}Bu \cdot n$ DB (0.07), r, 10 d $= \int_{0}^{OH} (-f_{3})^{OH}$ 1200° 142 HCHO (formalin) $= CO_{2}Bu \cdot n$ Me ₃ N (0.5), H ₂ O, air $= 4MeOC_{2}H_{2}OH (0.001), 60°, 3 h$ DB (0.11), microware flow reactor. 1 (69) 47 HCHO (formalin) $= CO_{2}Bu \cdot n$ $= \int_{0}^{OH} (-f_{2})^{OH}$ 231 HCHO (formalin) $= CO_{2}Bu \cdot n$ DB (0.09), r, 50 h $= \int_{0}^{OH} (-f_{2})^{OH}$ 231 HCHO (formalin) $= \int_{0}^{O} (-f_{2})^{O} (-f_{2})^{OH}$ DB (0.1), EtOH, 50°, 36 h $= \int_{0}^{OH} (-f_{2})^{OH} (-f_{2})^{OH}$ 46 HCHO (formalin) $= \int_{0}^{O} (-f_{2})^{O} (-f_{2})^{OH}$ DB (0.1), EtOH, 50°, 36 h $= \int_{0}^{OH} (-f_{2})^{OH} (-f_{1})^{OH}$ 46 HCHO (formalin) $= \int_{0}^{O} (-f_{2})^{OH} (-f_{2})^{OH}$ DB (0.1), EtOH, 50°, 36 h $= \int_{0}^{OH} (-f_{2})^{OH} (-f_{1})^{OH}$ 231 HCHO (formalin) $= \int_{0}^{O} (-f_{2})^{OH} (-f_{1})^{OH}$ DB (0.15), rt, 20 h $= \int_{0}^{OH} (-f_{2})^{OH} (-f_{2})^{OH} (-f_{1})^{OH}$ 231 HCHO (formalin) $= \int_{0}^{O} (-f_{2})^{OH} (-f_{2})^{OH} (-f_{2})^{OH} (-f_{2})^{OH} (-f_{2})^{OH} (-f_{2})^{OH} (-f_{2})^{O$	HCHO (formalin)	OC CONTRACTOR	1. Me ₃ N (0.5), <i>i</i> -Pr ₂ O, H ₂ O, <40°, 2. 50°, 8 h	O ()2 (35)	47
HCHO (paraformaldehyde) \checkmark CO ₂ Bu-n DB (0.07), rt. 10 d \checkmark OPH (20) ⁴ I (20) ⁴ I (20) ⁴ 142 HCHO (formalin) \checkmark CO ₂ Bu-n Me ₃ N (0.5), H ₂ O, air A-MeOC ₆ H ₄ OH (0.001), 60°, 3 h DB (0.11), microwave flow reactor. I (69) 47 HCHO (formalin) \checkmark CO ₂ Bu-r I (45) 74 HCHO (formalin) \checkmark CO ₂ Bu-r $ \checkmark$ OPH (-) 231 HCHO (formalin) \checkmark OP (\uparrow_2 NEt ₂ DB (0.09), rt. 50 h \int OPH (-) 231 HCHO (formalin) $=$ OP (\uparrow_2 NEt ₂ DB (0.09), rt. 50 h \int OPH (-) 231 HCHO (formalin) $=$ OP (\uparrow_2 Co ₂ H ₁₁ -n DB (0.1), EiOH, 50°, 36 h $=$ OP (\downarrow_2 Co ₂ H ₁₁ -n 46 HCHO (formalin) $=$ OP (\downarrow_2 Co ₂ Me DB (0.1), EiOH, 50°, 36 h $=$ OP (\downarrow_2 Co ₂ H ₁₁ -n 46 HCHO (formalin) $=$ OP (\downarrow_2 Co ₂ Me DB (0.1), EiOH, 50°, 36 h $=$ OP (\downarrow_2 Co ₂ H ₁₁ -n 21 HCHO (formalin) $=$ OP (\downarrow_2 Co ₂ Me DB (0.15), rt. 20 h Cl ₃ CC (\downarrow_2 OH (\downarrow_2 Co ₂ SS) 5 HCHO (formalin) $=$ OP (\downarrow_2 Co ₂ Me DB (0.15), rt. 20 h Cl ₃ CC (\downarrow_2 OH (\downarrow_2 Co ₂ SS) 5	HCHO (formalin)	O (Y ₃ OH	DB (0.09), EtOH, rt, 72 h	OH O O O O () 3 OH (81)	46
HCHO (formalin) \checkmark CO ₂ Bu-nMe ₃ N (0.5), H ₂ O, air 4-MeCC ₆ H ₄ OH (0.001), 60°, 3 h DB (0.11), microwave flow reactor, 170-180°I (69)47HCHO (formalin) \checkmark CO ₂ Bu-r- $\qquad \qquad $	HCHO (paraformaldehyde)	CO ₂ Bu-n	DB (0.07), rt, 10 d	OH I (20) ^c CO ₂ Bu- <i>n</i>	142
$\begin{array}{cccc} DB (0.11), \operatorname{microwave flow reactor}, & I (45) & 74 \\ 170 \cdot 180^{\circ} & & & \\ IOH & (-) & 231 \\ \end{array}$ $\begin{array}{cccc} HCHO (formalin) & & & & \\ & & & \\ & & & \\ & & \\ & & \\ HCHO (formalin) & & \\ & & & \\ & & $	HCHO (formalin)	CO ₂ Bu-n	Me ₃ N (0.5), H ₂ O, air 4-MeOC ₆ H₄OH (0.001), 60°, 3 h	I (69)	47
HCHO (formalin) $(C_{02}Bu-i)$ - $(C_{02}Bu-i)$ 231 HCHO (formalin) $(T_{0})^{O}(T_{2})^{NEt_{2}}$ DB (0.09), rt, 50 h $(T_{0})^{O}(T_{2})^{NEt_{2}}$ (75) 46 HCHO (formalin) $(T_{0})^{O}(T_{2})^{C_{3}H_{11}-n}$ DB (0.1), EtOH, 50°, 36 h $(T_{0})^{OH}(T_{2})^{OH}(T_{1})$ 46 HCHO (formalin) $(T_{0})^{O}(T_{2$			DB (0.11), microwave flow reactor, 170-180°	I (45)	74
HCHO (formalin) $f = \int_{0}^{0} f_{2}^{NEt_{2}}$ DB (0.09), rt, 50 h $f = \int_{0}^{0} f_{2}^{NEt_{2}}$ 46HCHO (formalin) $f = \int_{0}^{0} f_{Et}^{C_{3}H_{11},n}$ DB (0.1), EtOH, 50°, 36 h $f = \int_{0}^{0} f_{2}^{C_{3}H_{11},n}$ 46HCHO (formalin) $f = \int_{0}^{0} f_{2}^{-f_{3}} f_{1}^{-f_{3}}$ DB (0.1), EtOH, 50°, 36 h $f = \int_{0}^{0} f_{2}^{-f_{3}} f_{1}^{-f_{3}}$ 46HCHO (formalin) $f = \int_{0}^{0} f_{2}^{-f_{3}} f_{1}^{-f_{3}}$ DB (0.1), EtOH, 50°, 36 h $f = \int_{0}^{0} f_{2}^{-f_{3}} f_{1}^{-f_{3}}$ 46HCHO (formalin) $f = \int_{0}^{0} f_{2}^{-f_{3}} f_{2}^{-f_{3}}$ DB (0.1), EtOH, 50°, 36 h $f = \int_{0}^{0} f_{2}^{-f_{3}} f_{1}^{-f_{3}}$ 46Cl_{3}CCHO $f = \int_{0}^{0} f_{2}^{-f_{3}} f_{2}^{-f_{3}}$ DB (0.15), rt, 20 h $f = \int_{0}^{0} f_{2}^{-f_{3}} f_{2}^{-f_{3}}$ 5	HCHO (formalin)	CO ₂ Bu-1	_	() CO ₂ Bu- <i>t</i>	231
HCHO (formalin) $\begin{pmatrix} - & - & - & - & - & - & - & - & - & - $	HCHO (formalin)	0 1 1 1 1 1 1 1 1 1 1	DB (0.09), rt, 50 h	$\bigcup_{n=1}^{OH} O(1) \sum_{n=1}^{NEt_2} O(1)$	46
HCHO (formalin) $(-)$	HCHO (formalin)	$ \bigcup_{O \in Et}^{O \subset SH_{11}-n} $	DB (0.1), EtOH, 50°, 36 h	$\bigcup_{O}^{OH} C_{5}H_{11}-n $ (71)	46
Cl ₃ CCHO DB (0.15), rt, 20 h Cl ₃ C OH (>55) 5	HCHO (formalin)		_		231
	СІ3ССНО	CO ₂ Me	DB (0.15), rt, 20 h	Ch ₃ C OH (>55)	5

TABLE I-A. REACTIONS OF ACKILATES WITH ALIFIATIC AND ALICICLIC ALDERIDE	TABLE I-A.	REACTIONS (OF ACRYLATES	WITH ALIPHATIC	AND ALIO	CYCLIC ALDEHYI	DES
---	------------	--------------------	--------------	----------------	----------	----------------	-----

Aldehvde	Acrvlate	Conditions	Product(s) and Yield(s) (%)	Refs
			Cl ₃ C OH O	
		DB (0.2), rt, 30 min	0 (83) 0 48% de	88
	Ph Ph	DB (1.0), п, 14 d	$\begin{array}{c} Cl_3C \\ O \\ $	83
	(-) 0 025 N(C6H11)2	DB (0.1), rt, 2 d	$\begin{array}{c} Cl_{3}C \\ & & \\ &$	84, 328
МеСНО	CO ₂ Me	DB (0.11), rt, 7 d	L (88) CO ₂ Me	73, 49, 123, 223, 270, 294, 300, 308
		DB (0.09), dioxane, 0°, 8 h	I (74)	63
		HQ (0.05), rt, t _{1/2} <15 h	I (90)	33
		$(C_6H_{11})_3P$ (0.01), dioxane, 120-130°, 2 h	I (23)	17, 7, 8
		DB (0.5), microwave, 10 min	I (40)	76
		Et ₂ NMe, (0.05), 9 kbar, 20°, 10 min	I (86)	49
	۲۰۰۰ CO2Me	DB (0.08), 10 kbar, 55°, 20	OH CO ₂ Me	49
	CO ₂ Et	DB (0.05), rt, 7 d	OH CO ₂ Et	4, 1, 222, 322
	n	DB (0.05), 120-124°, 8 h	I (59)	1
	n	Me_3N (0.5), air,	I (35)	47
	"	$4-MeOC_{6}H_{4}OH (0.001), 60^{\circ}, 5^{\circ} n$ $H_2N(CH_2)_3NH_2 (0.15),$ $4-MeOC_{2}H_2OH (0.3), \pi 36 h$	I (93)	44
	"	$(C_6H_{11})_3P$ (0.01), dioxane,	I (25)	7
	u	Et ₂ NMe (0.08), THF. 12 kbar, 20°, 10 min	I (98)	48
	O CO ₂ Me	DB (0.4), rt, 100 min	$ \begin{array}{c} & OH \\ & O \\ $	36, 110
	CO ₂ Bu-n	H ₂ N(CH ₂) ₃ NH ₂ (0.15), 4-MeOC ₆ H ₄ OH (0.3), гt, 24 h	OH I (90) CO ₂ Bu- <i>n</i>	44
	"	$(C_6H_{11})_3P$ (0.01), dioxane,	I (—)	7
	n	DB (0.04), microwave flow reactor, 120°	I (27)	74
	CO ₂ Bu-i	DB (0.1), rt, 14 d	$\bigvee_{\text{CO}_2\text{Bu-}i}^{\text{OH}} (-)$	222
	CO ₂ Bu-t	DB (0.11), rt, 7 d	OH (92) CO ₂ Bu- <i>t</i>	236, 5, 123, 222, 300

TABLE I-A. REACTIONS OF ACRYLATES WITH ALIPHATIC AND ALICYCLIC ALDE	HYDES (Continued

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
		DB (0.1), π, 14 d	OH (-) O O O O O O O O O O	222
	OMe OMe OMe	DB (0.1), π, 14 d	OH O O O O O O O O Me ()	222
		DB (0.2), rt, 30 min		88, 110
		1. DB (0.2), 20-30°, 20 min 2. EtCHO	I (0) ^f	110
	CO ₂ Ph	DB (0.1), rt, 2 h	OH (0) ^g	24
	CO ₂ C ₆ H ₁₁	DB (0.1), rt, 14 d	$ \begin{array}{c} OH \\ CO_2C_6H_{11} \end{array} (-) \end{array} $	222
	CO ₂ C ₆ H₄OMe-4	DB (0.1), rt, 8 h	OH (0) [#]	24
	CO ₂ Bn	(C ₆ H ₁₁) ₃ P (0.007), dioxane, 120-130°, 2 h	OH () CO ₂ Bn	7
	0 C ₆ H ₁₁	DB (0.1), rt, 14 d	OH O O O C ₆ H ₁₁ ()	222
	0 0 0 0 C ₆ H ₃ Me ₂ -2,6	DB (0.1), 0°, 6 h	$\bigcup_{O}^{OH} (36)^{i}$	24
	O Ph	DB (0.4), rt, 90 min	$ \begin{array}{c} & & \\ & & $	36. 110
	$\bigcup_{O}^{O} C_6 H_2 M e_3 - 2, 4, 6$	DB (0.1), rt, 14 h	$OH (43)^{i}$	24
	0 C ₈ H ₁₇ - <i>n</i>	(C ₆ H ₁₁) ₃ P (0.007), dioxane, 120-130°, 2 h	$\bigcup_{O}^{OH} C_8 H_{17} n $ (40)	7
	Et Bu-n	DB (0.1), rt, 14 d	$ \begin{array}{c} $	222
		DB (—), 16°, 18 d	0 0 1 (95) 14% de	53, 85, 86
		DB (), 7 kbar, 30°, 113 h	I (36) 16% de	53

TABLE I-A. REACTIONS OF ACRYLATES WITH ALIPHATIC AND ALICYCLIC ALDEHYDES (Continued)

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
			√он √	
	~~^°.			
	0 (+)	DB (0.05)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $	85, 253
			он о	
		DB (), 5.5 kbar, 26°, 21 h		53
	II N	/		
		DB(-) 5.5 kbar 26° 21 b	ОН € (30)	53
			0 36% de	
	0		0	
	Ph		OH Ph	
		DB (1.0), rt, 14 d	(73) 2% de	83
	° \		° \	
	× (-)			
	05	DB (0.1), rt, 2 d	(70) 30% de	86, 253
	$N(Pr-i)_2$		N(Pr- <i>i</i>) ₂	
	O C ₁₈ H ₃₇ -n	H ₂ N(CH ₂) ₃ NH ₂ (0.15), 4-MeOC ₆ H ₄ OH (0.3), rt, 5 d	(89)	44
			0	
	(-)		уон Х	
	mos f	DB (1.0), rt, 4 d	(76) >74% ee	253
	¹ ′′ O₂S´ N(C6H11)2		Ο' Ο2S' N(C ₆ H ₁₁) ₂	
C ₃ MeO ₂ CCHO	CO ₂ Me	DB (0.07), 25°, 48 h	MeO ₂ C OH (74)	45
			CO ₂ Me	281 122
СНО	CO ₂ Me	DB (0.05), rt, 7 d	I (71)	281, 123, 226, 228,
		DB (0.09), dioxane, 0°, 8 h	<pre>✓ CO₂Me </pre>	268 63
		HQ (0.05), rt, $t_{1/2} = 5 h$	I (61)	33
		<i>n</i> -Bu ₃ P, (—), rt, 2 h	1 (80)	63, 50
		$(C_6H_{11})_3P$ (0.014), dioxane, reflux, 15 h	I (32)	7, 8, 17, 63
		DB (0.5), microwave, 10 min DB (0.15), 4.9 khar, 25° , 4 h	I (70)	76 50
	.0CO₂Mc		OH (0)	26,110
		DB (0.4), rt, 100 min	0 CO ₂ Me (86)	36, 110
			Ö '	
	ОСОСН	DB (0.15), n, 5 d	(53) ^j	111
			0 0	
	CO ₂ Et	DB (), rt, 4.5 d	I (50)	128, 222
	π	$H_2N(CH_2)_3NH_2$ (0.15),	I (75)	44
		4-MeOC ₆ H ₄ OH (0.3), rt, 48 h		

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
	<u></u>		ОН	
	\sim CO ₂ R			
	<u>R</u>		$\sim CO_2R$	
	<i>n</i> -Bu	H ₂ N(CH ₂) ₃ NH ₂ (0.15), 4-MeOC ₆ H ₄ OH (0.3), rt, 48 h	(69)	44
	i-Bu	DB (0.1), rt, 14 d	()	222
	t-Bu	^k , rt, 12 d	(62)	119, 43
	CH(Me)Pr-n	DB (0.15), 4.9 kbar, 50°, 4 h	(72)	50
	CH(Et) ₂	DB (0.15). 4.9 kbar, 50°, 4 h	(72)	280
	4-THP	DB (0.1), rt, 14 d	()	222
		DB (0.2), rt, 30 min		88
	n	1. DB (0.2), 20-30°, 30 min 2. MeCHO, 30 min	I (0) ^m	110
		DB (0.1), rt, 14 d		222
	O Ph	DB (0.4), rt, 90 min	OH $O $ $O $ $O $ Ph (89) (89)	36, 110
		DB (0.1), n, 7 d	OH O I (78) 16% de	86
		DB (1.0), n, 14 d	$OH \qquad Ph \\ O \qquad I (81) 65\% de$	83
	0 0 0 0 0 0 2 5 N(Pr- <i>i</i>)2	DB (0.1), rt, 7 d	(70) 42% de	86
		DB (0.1), rt, 10 d	$OH \\ O \\$	86
	-		(+) II (60) $70^{n} da^{n}$	84, 328
	(+)-I ()-I	DB (0.1), rt, 24 d	(-)-II (54) 9% de	84, 328
C4		DB (0.1), rt, 7 d	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	84, 328
EtO ₂ CCHO	<pre>✓ CO₂R</pre>		CO-R	
	<u>R</u>	DB (0.2) 50° 12 b	(80)	282, 45
	Me	DB (0.09) 60° 48 h	(54)	45
	Et Et	$E_{12} N (), 60^{\circ}, 48 h$	(34)	45

TABLE I-A. REACTIONS OF ACRYLATES WITH ALIPHATIC AND ALICYCLIC ALDEHYDES (Continued)

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
	<u>^</u>		EtO ₂ C OH	
	CO ₂ R			45
	<u>R</u>		CO_2R	
	(CH ₂) ₂ OH	DB (0.09), MeCN, 25°, 70 h	(58)	
	$(CH_2)_2NMe_2$	DB (0.13), dioxane, 25°, 70 h	(54)	
	<u> </u>		ROH	
RCHO	$\sim CO_2 R^1$		Ť	
<u>R</u>	<u>R¹</u>		CO_2R^1	
Cl(CH ₂) ₂ CCl ₂	Me	HQ (0.2), HFI (0.06), rt, 2.2 h	(13)	42
Cl(CH ₂) ₃	Me	DB (0.15), rt, 7d	(60)"	5, 216
MeO(CH ₂) ₂	Me	DB (0.15), rt	(36)	124
MeS(CH ₂) ₂	Me	HQ (0.2), HFI (0.06), rt, 6 h	(0)	42
(MeO) ₂ CH	Et	DB (0.1), MeOH (0.36),	()	330
		4-MeOC ₆ H ₄ OH (0.0002), rt, 9 d		
(MeO) ₂ CH	(CH ₂) ₂ OH	DB (0.1), MeOH (0.36), 4-MeOC ₆ H₄OH (0.0001), 70°, 5 h	()	330
(MeO) ₂ CH	(CH ₂) ₂ NMe ₂	DB (0.1), MeOH (0.36),	()	330
		4-MeOC ₆ H ₄ OH (0.0001), $/0^{\circ}$, 5 d	n-Pr. OH	
n-PrCHO	CO ₂ R		γ	
	R		CO ₂ R	
	Me	DB (0.15), rt, 7 d	(85)	216, 49, 227,
			(70)	308.319
	Me	$(C_6H_{11})_3P(0.012)$, dioxane, reflux, 15 h	(70)	7, 8
	Et	H ₂ N(CH ₂) ₃ NH ₂ (0.15), 4-MeOC ₄ H ₄ OH (0.3), rt. 60 h	(79)	44
	Et	DB ()	(85)	178
	Et	Ph ₂ P(CH ₂) ₄ OH (0.05), neat, reflux, 10 h	(23)	8,7
	(CH ₂) ₂ OH	DB (0.15), rt. 5 d	(55)	111
	CH_CH=CH_	$(C_{4}H_{11})_{2}P(0.05)$ reflux 3 h	(33)	7
	t-Bu	DB (0.15). HOAc (0.03). 35°. 14 d	(20)	43
	<i>t</i> -Bu	DB (0.1), 6 kbar, 7 d	(34)	43
			i-Prs OH	
i-PrCHO	CO ₂ R			
- Theme	R		CO2B	
	Me	DB (0.05), rt. 13 weeks	(68)	123, 270,
			()	271, 300, 308
				319, 331
	Me	DB (0.09) 0° 12 b	(69)	63
	Me	$DB(0.05), 50^{\circ}, 50^{\circ}$	(57)	123
	Me	Ph ₃ P (0.006), dioxane, 120-130°, 2 h	(<u>-)</u> ^p	17
	Ft	$H_{2}N(CH_{2})_{2}NH_{2}(0.15)_{2}$	(67)	44
	E.	4-MeOC/H/OH (0.3) rt 60 h		
	CH(Me)Pr-n	$DB (0.15) 4.9 \text{ kbar} 50^{\circ} 4 \text{ b}$	(72)	50
	Ph	DB(0.13), 4.5 kbal, 50, 41	(72)	24
	Fil	DB (0.1), II, 14 II	i-Pr. OH	24
		DB (0.2), rt, 30 min		88
		DB (0.1), п, 14 d	<i>i</i> -Pr OH O (77) 7% de	86

TABLE I-A. REACTIONS OF ACRYLATES WITH ALIPHATIC AND ALICYCLIC ALDEHYDES (Continued)

TABLE I-A. REACTIONS OF ACRYLATES WITH ALIPHATIC AND ALICYCLIC ALDEHYDES (Continued)

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs
			n-Bu OH	
n-BuCHO	CO ₂ R		Ĭ	
	R		\sim CO ₂ R	
	Me	DB (0.3), rt, 6 d	(87)	261, 332
	Et	n-Bu(C ₆ H ₁₁) ₂ P, (0.02), 40°, 20 h	(68)	14
	0		n-Bu OH	
	$\ll \gamma \gamma \gamma$	DB (0.2), rt, 30 min	0 0 $(0)^r$	88
	0		ő –	
s-BuCHO	CO ₂ Bu-t	HO (0.15), rt. 18 d	s-ви ОН (17)	43
	-		COsBust	
i-BuCHO	COrR		I-BU OH	
	D		COR	
	Me	HO (0.2), HFI (0.06) 45° 36 b	(91)	42
	Me	DB (0.2), rt. 5 d	(56)	318.271
	Me	DB (0.09). 0°. 12 h	(68)	63
	Et	$H_2N(CH_2)_3NH_2 (0.15).$	(70)	44
		$4-\text{MeOC}_6\text{H}_4\text{OH}$ (0.3), rt, 60 h	×/	
	i-Pr	DB (0.2), rt, several d	(62)	271
	t-Bu	k, π, 19 d	(95)	119, 43
	t-Bu	DB (0.1), 6 kbar, rt, 7 d	(52)	43
			t-Bu OH	
t-BuCHO	CO ₂ Me	DB (), rt, 10 d	(0)	121
			CO ₂ Me	
			MeO ₂ C OH	
MeO ₂ C ChO	> CO ₂ K			
	<u>K</u> Ma		(46)W	124
	MIC t-Bu	DB (0.15), HOAC (0.03), π	(14)*	124
	I-DU	DB (0.13), HOAC (0.03), R, 63 d	(14) ²	124
n-BuO2CCHO	CO ₂ Bu-i	DB (0.09), 50°, 27 h	<i>n</i> -BuO ₂ e (66)	45
		22 (0.07), 20 (27 11	CO ₂ Bu-i	15
			n-CeHuy OH	
n-C ₅ H ₁₁ CHO	CO ₂ Me	DB (0.2). rt, 6 d	(85)	122, 261
			CO ₇ Me	
ł				
	Ann 11		n-Pr OH	
n-Pt CHO	CO ₂ Me	HQ (0.4), n, 60 d	(30) anti:syn = 35:65	30
			✓ CO₂Me	
0				
<u> </u>	CO ₂ R	DB ()		333
	-		CO ₂ R	
	•		C ₆ H ₁₁ OH	
C ₆ H ₁₁ CHO	CO ₂ R		Ţ	
	<u>R</u>		CO ₂ R	
	Me	HQ (0.25), HFI (0.1), 45°, 2 d	(66)	42, 72
	t-Bu	HQ (0.15), rt, 18 d	(30)	43
	0		С ₆ Н ₁₁ ОН	
	~ 0		ј " ľ	
	≈ΥΥγγ	DB (0.2), rt, 30 min	0 1 $(0)^{v}$	88
	0		ő 🔶	
		1. DB (0.2), 20-30°. 30 min	I (0) ²	88
		2. MeCHO, 30 min	- \->	
		1. DB (0.2), 20-30°, 30 min	\mathbf{I} (0) ^{<i>aa</i>}	88

TABLE I-A.	REACTIONS OF J	ACRYLATES WITH	ALIPHATIC AND	ALICYCLIC A	ALDEHYDES (Continued

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
	$\overset{Ph}{}_{(-)}$		C_6H_{11} OH H_1	
		DB (1.0), rt, 14 d	0 (67) 31% de	83
		DB (0.1), rt, 24 d	C_6H_{11} OH (56) O O_2 (56) O O_2 (56)	84, 328
Сно	$N(C_6H_{11})_2$ CO_2Me	DB (0.15), rt, 10 d	O + OH (63)	216
<i>n</i> -C ₆ H ₁₃ CHO	CO ₂ Me	DB (0.3), rt, 6 d	$\begin{array}{c} n - C_6 H_{1,3} \\ \hline \\ $	261, 332
Dr. <i>i</i>	n	H ₂ N(CH ₂) ₃ NH ₂ (0.15), 4-MeOC ₆ H ₄ OH (0.3), rt, 48 h	I (74)	44
MeO O CHO	CO ₂ Me	DB (1.0), rt, 34 d	MeO	30
			$\mathcal{C}O_2Me$ (24) anti:syn = 51:49 Bn $\mathcal{O}H$	
BnCHO	CO ₂ R R		CO ₂ R	
	Me Et	DB (0.15), HOAc (0.03), π, 33 d H ₂ N(CH ₂) ₃ NH ₂ (0.15), 4-McOC ₆ H ₄ OH (0.3), π, 36 h	(17) ¹⁶ (79)	124 44
r-BuO₂C N H CHO	CO ₂ Me	DB (0.1), n, 7 d	$I-BuO_2C$ H CO_2Me	30, 92
Ph	CO.P		$Ph \longrightarrow OH$	
Спо	R		CO ₂ R	
	Me	DB (0.15), rt, 18 d	(72)	124
	Me	DB (0.09), 0°, 8 h	(67)	03 42
	Me 7-Bu	HQ (0.2), HFI (0.06), 45°, 24 n HQ (0.15), rt, 18 d	(35)	43
Ph CHO	CO ₂ Me	HQ (0.2), HFI (0.06), 45°, 26 h	Ph OH (47) 58% de CO_2Me	42
тнр Сно	CO ₂ Mc	DB (0.15), n, 7 d	THP OH (87)	216
n-CoHu-CHO	CO ₂ R		n-C ₈ H ₁₇ OH	
	R		CO ₂ R	
	Me Et	DB (—) H ₂ N(CH ₂) ₃ NH ₂ (0.15), 4-MeOC ₆ H ₄ OH (0.3), π, 48 h	(70-85) (72)	270 44
0	~		R OH	
RCHO R	✓ CO₂Mc		CO ₂ Me	
BnO 5th		DB (0.1), π, 14 d	(68) $anti:syn = 3:2$	30, 89
1				

THELET A. REACTIONS OF ACKTEATES WITH ALL HATC AND ALL TOLIC ADDITIDES (COMMAND	TABLE I-A.	. REACTIONS OF	F ACRYLATES WIT	H ALIPHATIC AND	ALICYCLIC ALDEHY	'DES (Continued)
---	------------	----------------	-----------------	-----------------	------------------	------------------

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
	A		R → OH	
RCHO	CO ₂ Me			
<u>R</u> Ph			✓ CO₂Me	
MeO O St		DB (0.1), rt, >10 d	(42) $anti:syn = 37:63$	30
y		DB (0.15), rt, 20 d	(77)	331
		HQ (0.2). HFI (0.06), 45°, 36 h	(93) 0% de	42
OBu-n			John Charlen	
	CO ₂ R		n-BuO	
n-Buo Cho	<u>R</u>		CO ₂ R	
	Et	DB (0.1), n-BuOH (0.01), 4-MeOC ₆ H ₄ OH (0.0002), rt. 9 d	()	330
	<i>n</i> -Bu	"	(—)	330
o			<u> </u>	
	CO ₂ Me	DB (1.0), rt, 3.5 d	N OH CO ₂ Me	30, 92, 14
() O				
			$(28) antt:syn = 46:54^{cc}$	
RCHO	CO ₂ R ¹		K On	
<u>R</u>	<u>R¹</u>		CO_2R^1	
BnO (35)	Ме	DB (0.08), rt, 7 d	(70) 51% de	90
BzO 55	Me	DB (0.15), rt, 7 d	(95)	216, 5, 22
4-CIC ₆ H ₄ O	کر Me	DB (0.12), rt, 139 h	(39)	212
Ph	Me	DB (0.03), n, 5 d	(24)	212
BnO O s	Ме	DB (1.0), rt, 6 d	(42) anti:syn = 7:3	30
1	t-Bu	HQ (0.1), rt, 40 d	(30) $anti:syn = 81:19$	30
BzO , st	Me	DB (0.15), rt, 8 d	(92)	216, 227
Aco	Ме	DB (0.15), n, 7 d	(89)	216
$4-ClC_6H_4O$	Ме	DB (0.16), rt, 113 h	(10)	212
4-MeC ₆ H ₄	Ме	DB (0.3), rt, 14 d	(55)	261, 332
BnOOZ	Me	DB (1.0), n, 23 d	(68) $anti:syn = 41:59$	30
l Pr-i	-			
2.4.6-Me2C4H2 0 /	t-Bu ג'בי Me	DB (1.0), rt, 30 d DB (0.15) rt, 7 d	(53) $anti:syn = 33:67$	30 216 5
	13 m	ע <i>נו. ו. א</i> ו ע	(07)	210, 3
л-С ₁₄ Н ₂₉ U	Me	DB (0.3), n, 9 d	(72)	122
BnO	Me	DB (0.5), n, 20 d	(48) anti:syn = 65:35	30
OBn Bn ا Bn	Ме	HQ (1.0), rt, 20 d	(71) <i>anti:syn</i> = 72:28	30, 92
Bn Tr A				
TBDPSO 3	Me	DB ()	(40)	320, 298

TABLE I-A. REACTIONS OF ACRYLATES WITH ALIPHATIC AND ALICYCLIC ALDEHYDES (Continued)

	Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
	R ¹ CHO	\sim CO ₂ R ²		R ¹ OH	
	R ^I	R ²		\sim CO ₂ R ²	
C3	CH ₂ =CH	Me	DB (0.15), rt	$(0)^{a}$	127
C4	- sos	Me	DB (0.15), n, 20 d	(33)	5, 127
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Me	DB (0.15), MeOH (0.01), rt, 20 d	(31)	275, 127, 334
		Et	H ₂ N(CH ₂ ) ₃ NH ₂ (0.15), 4-MeOC ₆ H ₄ OH (0.3), rt, 60 h	(66)	44
		<i>n</i> -Bu	H ₂ N(CH ₂ ) ₃ NH ₂ (0.15), 4-MeOC ₆ H ₄ OH (0.3), rt, 72 h	(66)	44
C5	- rot	Me	DB (0.15), 4-MeOH (0.01), rt, 25 d	(35)	275
C7	O ₂ N O	Me	HQ (0.2), HFI (0.06), n, 9 h	(0)	42
	0 July	Ме	HQ (0.1), CHCl ₃ , rt, 14 d	(38)	334
C₀	Ph	Ме	DB (0.15), rt, 6 d	(75)	127, 76,
					275, 334
	<u></u> >	Me	DB (0.5), microwave, 45 min	(15)	76
C					
υn	re	Ме	HQ (0.2), HFI (0.06), 65°, 2 d	(0)	42

TABLE I-B. REACTIONS OF ACRYLATES WITH OLEFINIC ALDEHYDES

^a The product was a polymer.

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
			R ^I OH	
R ¹ CHO	$\sim CO_2 R^2$			
<u>R'</u>	$\frac{\mathbf{R}^2}{\mathbf{R}^2}$		$\sim CO_2R^2$	10
3,4-F ₂ C ₆ H ₃	Me	HQ (0.2), HFI (0.06), rt, 5 h	(93)	42
$3,5-Cl_2C_6H_3$	Me	HQ (0.2), HFI (0.06), 45°, 1 h	(87)	42
2-FC ₆ H ₄ •Cr(CO) ₃ (±)	Me	DB(0.5), rt, 7 h	(92) 84% de	97
2-CIC ₆ H ₄	Me E	DB(0.5), R, 2 d	(>90)	97
	Et	$H_2N(CH_2)_3NH_2$ (0.15), 4-MeOC ₆ H ₄ OH (0.3), rt, 36 h	(91)	44
$2-ClC_6H_4$ •Cr(CO) ₃ (±)	Me	DB, (0.5), rt, 6 h	(89) >95% de	97
$2-ClC_{6}H_{4}-Cr(CO)_{3}(S)-(+)$	Me	DB (0.5), rt, 8 h	(97) >95% de ^a	97
4-CIC ₆ H ₄	Me	DB (), rt, 72 h	(95)	128, 107
	Et	H ₂ N(CH ₂ ) ₃ NH ₂ (0.15), 4-MeOC ₆ H ₄ OH (0.3), rt, 24 h	(95)	44
4-BrC ₆ H ₄	t-Bu	DB (0.15), HOAc (0.03), 35°, 21 d	(81)	43
$3-O_2NC_6H_4$	Me	HQ (0.1), HFI (0.06), rt, 90 min	(97)	42
4-O2NC6H4	Me	DB (—), rt, 18 h	(95)	128
2 0 1	Ме	HO (0.1), HFI (0.06), 25°, 42 min	(95)	42
	Me	(S)-(-)-retronecine (0.05), rt, 2 weeks	(49) 11% ee	51, 52
			4-OaNCeH4, OH	
4-O ₂ NC ₆ H ₄ CHO	CO ₂ Me	DB (0.5), microwave, 40 min	(10) ^b	76
	Ph		$4 - O_2 NC_6 H_4 $	
		DB (1.0), CHCl ₃ , rt, 14 d	0 (65	) 83
	ő 🔓			% de
		DB (0.1), rt, 30 d	$4 - O_2 N C_6 H_4 \qquad OH \qquad 0 O_2 S_1 (61) 9\% de \qquad N (C_6 H_1) 2$	84, 328
РһСНО	CO ₂ Me	DB (0.5), rt, 4 d	$\begin{array}{c} (01) \ $7.0 \text{$1.0 $1.0 \text{$1.0 \text{$1.0 $1.0 $1.0 $1.0 $1.0 $1.0 $1.0 $1.0 $	126, 5, 24, 27, 76, 104, 123, 129, 22
				261, 300, 30
	п	DB (0.9), dioxane, 0°, 4 h	I (68)	63
	"	HQ (0.2), HFI (0.075), 37°, 23 h	I (85)	42
	"	DB (0.5), microwave, 10 min	I (34)	76
		PPh ₃ , (0.006), dioxane, 120-130°, 2 h	I () ^c	17
	11	Ph ₂ P(CH ₂ ) ₄ OH (0.04), 30-35°, 20 h A	I (19)	7, 8
		$(S,S) \sim N$ OBn (0.15), OBn	I (72) 10% ee ^e	39
		hydroquinone (0.01), THF/MeOH (5:1 10 kbar, 30°, 23 h	), ^d	
	<u>^</u>		Cr(CO) ₃ •PhOH	
PhCHO•Cr(CO) ₃	CO ₂ Me	DB (0.5), rt, 6 h	(94) CO ₂ Et	97
РһСНО	CO2Me	DB (0.1), 15 kbar, 50°, 45 h	Ph OH $(-) E:Z = 1$	82
	CO ₂ Et	DB (0.13), rt, 7 d	Ph OH I (79)	27, 222,
	II	H ₂ N(CH ₂ ) ₃ NH ₂ (0.15), 4-MeOC ₆ H ₄ OH (0.3), rt, 36 h	I (83)	44

TABLE I-C. REACTIONS OF ACRYLATES WITH AROMATIC ALDEHYDES

ldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
	CO-Ft	4 Ma.NC H N (0.15)	I (70)	44
		$4 - 101 e_2 \ln C_5 \Pi_4 \ln (0.13),$	1 (/7)	44
		$4-MeOC_6H_4OH(0.3), \pi, 30 \pi$	I (01)	
		DBU (0.15), 4-MeOC ₆ H ₄ OH (0.3),	1 (81)	44
		rt, 30 n	Ph. OH	
	CO ₂ R			
	R		CO-R	
	(CHabe	DB (0 13) # 3 d	(81)	27
	(CH-)-C	DB(0.13), H, 3d	(61)	27
	(CH ₂ ) ₂ Cl	DB (0.13), n, 3d DB (0.13) $n 2d$	(0)	27
	(CH ₂ ) ₂ OH	$DB(0.15), \pi, 5d$	(5)) ^f	111 27
	CH ₂ CE	DB(0.13), rt, 5 h	(58)	27
	CH-CCI-	DB (0.13), rt, 15 h	(56)	27
	enzeerz	<b>DD</b> (0.13), 10, 30 ft	Ph OH	21
	MeOrC	DB (), 15 kbar, 50°, 250 h		82
	CO ₂ Me	22( ), 10 100,00 , 200 1	MeO ₂ C	
	> CU ₂ K			
	<u>K</u>			27
	CH ₂ CH=CH ₂	DB (0.13), rt, 3 d	(75)	27
	CH ₂ COMe	DB (0.13), rt, 2 d	(65)	27
	(CH ₂ ) ₃ OH	DB (0.15), rt, 3 d	(66)	111
	(CH ₂ ) ₂ OMe	DB (0.13), rt, 4 d	(89)	27
	(CH ₂ ) ₂ SCN	DB (0.13), rt, 2 d	(66)	27
	n-Bu	DB (0.13), rt, 4 d	(85)	27
	ii ii	$H_2N(CH_2)_3NH_2$ (0.15),	(89)	44
		$4-MeOC_6H_4OH$ (0.3), rt, 36 h		
		DB (0.11), microwave flow reactor, 120	^p (23)	74
	<i>i</i> -Bu	DB (0.13), rt, 16 d	(85)	27
	t-Bu	DB (0.15) HOAc (0.03) 35° 21 d	(77)	43, 27
	(CH2)4OH	DB (0.15), rt. 3 d	(85)	111
	(CH ₂ ) ₂ NMe ₂	DB (0.13), rt. 8 d	(82)	27
	(S)-(-)-EtO ₂ CCHMe	DB (1.0), rt. 12 d	(), 4% de	30
	3-FC-H	$DB((0.13)) \neq 5b$	(43)	27
	4-FC-H	DB(0.13) rt 3 d	(39)	27
	4-CIC_4H4	DB (0.13), rt, 3 d	(42)	27
	4-02NC+H4	DB (1.5), CHCb, rt. 72 h	(16)	24, 27
	Ph	$DB_{(0,1)}$ rt 3 h	(78)	24, 27
			(10)	
	O □ (R)-(-)		Ph OH O	
				00.20
	ő 🔶	DB (—)		88, 30
			0 2% de	
	COR			
	<u>K</u>	$DD(0.12) \rightarrow 0.1$	- CU ₂ R	77
	<i>n</i> -C ₆ H ₁₃	$DP(0.15) \rightarrow 4.4$	(82)	111
		DB (0.13), $\pi$ , 4 d DP (0.13), $\neq$ 124 b	(80)	27
	$3 - UF_3 U_6 H_4$	DB (0.13), $\pi$ , 124 $\pi$	(22)	21
	4-CF ₃ C ₆ H ₄	DB (0.13), rt, 10 d	(0)	27
	3-NCC ₆ H ₄	DB (0.13), rt, 10 d	(0)	27
	4-NCC ₆ H ₄	DB (0.13), rt, 10 d	(0)	27
	3-FC ₆ H ₄ CH ₂	DB (0.13), rt, 90 h	(77)	27
	4-FC ₆ H ₄ CH ₂	DB (0.13), rt, 92 h	(85)	27
	3-MeC ₆ H ₄	DB (0.13), rt, 36 h	(54)	27
	4-MeC ₆ H ₄	DB (0.13), rt, 36 h	(55)	27
	3-MeOC ₆ H ₄	DB (0.13), rt, 24 h	(43)	27
	4-MeOC ₆ H ₄	DB (0.13), rt, 8 h	(54)	27, 24
	(CH ₂ ) ₆ SCN	DB (0.15), N, O a	(00)	<i>∠ 1</i>
	3 F.CC U CU	DB (0 13) rt 67 b	(83)	27

 TABLE I-C. REACTIONS OF ACRYLATES WITH AROMATIC ALDEHYDES (Continued)

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs
	<u>^</u>		Ph_OH	
	CO ₂ R			
	R		CO ₂ R	
	4-MeO ₂ CC ₆ H ₄	DB (0.13), rt, 20 h	(37)	27
	3-MeC ₆ H ₄ CH ₂	DB (0.13), rt, 120 h	(83)	27
	$4-MeC_6H_4CH_2$	DB (0.13), rt, 120 h	(76)	27
	3-MeOC ₆ H ₄ CH ₂	DB (0.13), rt, 120 h	(86)	27
	4-MeOC ₆ H ₄ CH ₂	DB (0.13), rt, 192 h	(86)	27
	$2,6-Me_2C_6H_3$	DB (1.5), CHCl ₃ , rt, 72 h	(49)	24
	$Ph(CH_2)_2$	DB (0.13), rt, 4 d	(84)	27
	$3-Me_2NC_6H_4$	DB (0.13), rt, 20 h	(61)	27
	$4-Me_2NC_6H_4$	DB (0.13), rt, 84 h	(62)	27
	<i>n</i> -C ₈ H ₁₇	DB (0.13), rt, 12 d	(78)	27
	n-BuCH(Et)CH ₂	DB (0.13), rt, 20 d	(54)	27
	(R)-(-)-MeO ₂ CCHPh	DB (1.0), rt, 10 d	() 34% de	30
	(CH ₂ ) ₉ OH	DB (0.15), rt, 12 d	(60)	111
	$\checkmark$		Ph~OH ~	
				<b>5</b> 2 20 (
		DB (—), 17°, 48 d		53, 30, 8
	ö		Ö 22% de	
		DB (), 7.5 Kbar, 30°, 21 h	I (42) 100% de	53
			PhOH	
	CO ₂ R		Ť	
	R		CO ₂ R	
	<i>n</i> -C ₁₀ H ₂₁	DB (0.13), n, 14 d	(75)	27
	(CH ₂ ) ₁₀ OH	DB (0.15), rt, 6 d	(78)	111
			PhO	
		DB (0.13), dioxane, rt, 62 d		27
	Ph		Ph	
	$\checkmark$		Ph OH	
		DB (1.0). rt. 14 d		83
			35% de	05
			$0 \rightarrow 55\%$	
	1		i i	
	n	DB (), 8 kbar, 35°, 70 h	1 (31) 86% de	53
	~		~_	
	X		PhOH	
		DB (0.1), rt, 10 d	(84) 15% de	86
	$\mathbf{O}_{\mathbf{O}_{2}}$		$\mathbf{O}_{\mathbf{O}_{\mathbf{I}}}$	
	N(Pr- <i>i</i> ) ₂		N(Pr-i) ₂	
		H ₂ N(CH ₂ ) ₂ NH ₂ (0.15)		44
	$\sim CO_2C_{18}H_{37}-n$	4-MeOC/H/OH (0.3) # 10.4		
		·	<ul> <li>CU₂C₁₈m₃₇-n</li> </ul>	
	$\boldsymbol{\lambda}$		Ph. OH	
	prost		t or t	
	0 O28			
	NR ₂		NR ₂	
	<u></u>		-	
	C ₆ H ₁₁	DB (0.1), rt, 15 d	(80) 25% de	86, 30, 8
	Bn	DB (0.1), rt, 5 d	(71) 18% de	84, 328
		DB(0.05) CHClast 3 d	⁸ (19)	54. 76
OC4H4CHO	✓ CO₂Me			~ ~ / / /
OC ₆ H₄CHO	<pre>&gt; CO₂Me "</pre>	DB (0.05), CHCl ₃ , R, 5 d DB (0.1), CH ₂ Cl ₂ , $0^{\circ}$	^h (40)	32

TABLE I-C. REACTIONS OF ACRYLATES WITH AROMATIC ALDEHYDES (Continued)

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
8			ROH	
RCHO	CO ₂ Me		Ţ	
R			CO ₂ Me	
2-F ₃ CC ₆ H ₄		HQ (0.2), HFI (0.06), 45°, 26 h	(93)	42
4-NCC ₆ H ₄		HQ (0.1), HFI (0.03), rt, 2.3 h	(91)	42
0. ~ }				
		HQ (0.2), HFI (0.06), rt, 5.5 h	(88)	42
O NO2				
Br > 5				
T Tr		HQ (0.2), HFI (0.06), 45°, 10 h	(93)	42
OMe				
4-H ₂ NCOC ₆ H ₄		HQ (0.2), HFI (0.06), 45°, 29 h	(46)	42
$2-MeC_6H_4$ •Cr(CO) ₃ (±)		DB (0.5), rt, 48 h	(90) 68% de	97
			4-MeC.H. OH	
4-MeC/H/CHO	CO ₂ R			
	D		COR	
		DB () # 30 d	(95)	128 107 261
		DB (0.15) + 54	(73)	111
		DB (0.15), it, 5 u DB (0.15), $a \in A$	(00)	111
	(Cn ₂ )40n	DD (0.13), IL 0 0	(00)	
	¥ (-)			
	Ĺ		(30) 1000 40	53
	$\mathbf{Y}$	DB (), 17 ² , 48 d	(30) 100% de	55
		DD ( ) 85 Khar 219 46 h	(21) 970% da	52
		DB (), 8.5 Kbar, 51 , 40 II	(31) 87% de	55
			2-MeOC ₆ H ₄ OH	
2-MeOC ₆ H ₄ CHO	$\sim CO_2 R$			
	<u>R</u>		> CO₂R	
	Me	DB (0.15), rt, 20 d	(90)	129, 97
2 MaOC H CHOAC+(CO) (+)	Ма	$DP(0.5) \neq 0.2 h$	(87) >95% de	97
2-MeOC6n4ChO-Ch(CO)3 (±)	Me	DB(0.5), it, $95$ if	$(87) > 95\% de^{4}$	07
2 MaOC.H.CHO		DB(0.5), 10, 95 m	(54)	111
2-1400061140110	(CH ₂ )30H	$DB(0.15) \neq 6d$	(54)	111
	(CH2)4011	<b>DB</b> (0.13), 11, 0 d	(30)	
	<b>A</b>		X-MeOC ₆ H ₄ OH	
X-MeOC ₆ H ₄ CHO	$\sim CO_2 R$			
<u>X</u>	<u></u>		<pre>✓ CO₂R</pre>	
3	Me	HQ ()	(91)	224
4	Me	DB (0.15), rt, 20 d	(90)	129
	Me	HQ (0.3), HFI (0.1), 37°, 26 h	(41)	42
?	Et	H ₂ N(CH ₂ ) ₃ NH ₂ (0.15),	(72)	44
		4-MeOC ₆ H ₄ OH (0.3), rt, 96 h		
?	n-Bu	H ₂ N(CH ₂ ) ₃ NH ₂ (0.15),	(74)	44
		4-MeOC ₆ H ₄ OH (0.3), rt, 96 h		
9			$2,4-\text{Me}_2\text{C}_6\text{H}_3$ OH	43
$2,4-Me_2C_6H_3CHO$	✓ CO ₂ Me	HQ (0.3), HFI (0.12), 45°, 30 h	(45)	42
			∽ `CO ₂ Me	
	$\sim$		4-EtC ₆ H ₄ OH	
	· · · · · · · · · · · · · · · · · · ·			
4-EtC ₆ H ₄ CHO		DB (), 8.5 kbar, 31°, 46 h		53
	ő 🗸		0 94% de	
	Ĭ			
10	•		$3,4,5-MeO_{3}C_{6}H_{2}$ , OH	
3,4,5-MeO ₃ C ₆ H ₂ CHO	CO ₂ Me	DB (0.5), rt, 4 d	I (5)	76
	-		CO ₂ Me	
	u	HO (0.2), HFI (0.06) 45° 27 h	I (48)	42
	"	DB(0.5) microwave 30 min	I (15)	76
		DD (0.5), Incrowave, 50 Inn	• (15)	
11			P OH	
п	COaMe		R OH	
ncho B	CO ₂ Me		R OH CO ₂ Me	
RCHO <u>R</u> I-Naphthyl	CO ₂ Me	DB (), rt, t _{1/2} = 12 d		132, 107, 30

TABLE I-C. REACTIONS OF ACRYLATES WIT	H AROMATIC ALDEHYDES (C	Continued
---------------------------------------	-------------------------	-----------



TABLE I-C. REACTIONS OF ACRYLATES WITH AROMATIC ALDEHYDES (Continued)

- " The product has the S, S(-) configuration.
- ^b The product was a mixture of *cis* and *trans* isomers.
- " The conversion was 70-90%.
- ^d In pure THF, the yield was 14%.
- "The product has the S configuration.
- ^f The diester CH₂=CHCO₂(CH₂)₂O₂CCH=CH₂ was formed in 20-35% yield.



^{*i*} The number refers to the crude yield.

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
5				
$\square$	CO ₂ Me	HO (0,1), HFI (0,1), Ar, rt. 30 min	$O_2N$ $S$ $OH$ (56)	42
O ₂ N S CHO	2 · · · 2		CO-Me	
	COrB		Состон	
о сно				
		$DP(0.12) \neq 2h$	$\sim CO_2 R$	77
	Me	DB (0.13), rt, 24 h	(34)	27. 5.
				123, 129
	(CH ₂ ) ₂ Cl	DB (0.13), п, 17 h	(70)	27
	(CH ₂ ) ₂ OMc	DB (0.13), rt, 36 h	(90)	27
	n-Bu	DB (0.13), rt, 3 d	(88)	27
	(CH ₂ ) ₂ NMe ₂	DB (0.13), rt, 3 d	(86)	27
	Ph	DB (0.1), rt, 8 h	(21)	24
	Et I	$DB(0.12) \rightarrow 154h$	(97)	27
	Bu-n	<b>υρ</b> (υ.1 <i>3)</i> , π, 134 <b>Π</b>	(00)	21
	$\checkmark$			
	◆s ^c , ()			
		DB (0.1), rt, 18 h	(85) 20% de	86, 53
	$\rightarrow$			
	l			
	Pn V			
	(-)			
	3	$DB(10) \neq 14d$	(59) 30% de	83
	$\checkmark$	<i>DD</i> (1.0), 11, 140	(37) 30 % 42	05
	1		0_	
СНО			A DH	
	CO ₂ Me	HQ (0.2), HFI (0.06), Ar, 45°, 6 h	(35)	42
0			CO ₂ Me	
( )	CO ₂ R		's on	
`s´ `CHO	R		CO2R	
	Me	DB (0.15), rt. 3 d	(92)	129
	Me	HQ (0.2), HFI (0.06), Ar, 45°, 7 h	(54)	42
	Et	$H_2N(CH_2)_3NH_2$ (0.15),	(94)	44
		4-MeOC ₆ H ₄ OH (0.30), п, 36 h		
	$\sim$			
	•25 · (-)			
	·	DB (), 6 kbar, 27°, 6 d	(52)	53
	Ý			
0 /	-			
СКО	COME	DB () rt		227
			CO ₂ Me	/
,				
[ Сно	~			
N  N	[™] ^{CO} 2R		N=/ )	
Position	<u></u>		CO ₂ R	
2	Me	DB (0.05), CHCl ₃ , rt, 3 d	(94)	113, 129
2	Et	DB (0.05), π	(96)	113
2	<i>i</i> -Pr	DB (0.05), rt, 3 d	(51)	113
3	Me Et	DB (), CHCl ₃ , rt, 16 h H-N(CH), NH (0.15)	(94)	34, 5 44
3	El	H21N(CH2)31NH2 (U.15), 4-MeOC ₆ H4OH (U.3), rt. 24 h	(63)	
3	Ph	DB (0.1), 0°, 10 min	(54)	24
4	Мс	DB (0.1), 0°, 10 min	(83)	34, 336
4	Me	HQ (0.05), HFI (0.03), rt, 3.5 h	(88)	42, 33

 TABLE I-D. REACTIONS OF ACRYLATES WITH HETEROCYCLIC ALDEHYDES

Aldehyde	Acrylate	Conditions	Product(s) and Yield(s) (%)	Refs.
Сно	CO ₂ Me	HQ (0.1), CHCl ₃ , π, 14 d	OH (33)	334
N CHO Me	CO ₂ Me	HQ (0.2), HFI (0.06), 65°, 2 d	OH Me CO ₂ Me	42
o	CO ₂ R		осон	
СНО	<u>R</u> Me Me	DB (0.1), rt, 55 d HO (0.1), rt, 45 d	$CO_2R$ (62) anti:syn = 69:31 (40) anti:syn = 75:25	30 30
	<i>t</i> -Bu	DB (0.1), n, 90 d	(61) $anti:syn = 66:34$	30
RCHO	$\frac{R^{1}}{R^{1}}$		CO ₂ R ¹	
$C_7$ $N$ $C_{10}$ $O$	Me Me	DB (0.05), rt HQ (0.2), HFI (0.08), 25°, 4.5 h	(94) (95)	113 42
CI	Ме	HQ (0.2), HFI (0.06), π, 18 h	(0)	42
N CI	Ме	HQ (0.2), HFI (0.06), 45°, 2.2 h	(98)	42
N N	Me Me	DB (—), CHCl ₃ , rt, 16 h HQ (0.05), HFI (0.03), rt, 5 h	(100) (99)	34 42
N St.	Ме	DB (0.05), rt	(83)	113
	Ме	HQ (0.2), HFI (0.06), 65°, 2 d	(0)	42
√-ξ- NSO₂Ph	Ме	DB (1.0), rt, 12 h	(55) <i>anti:syn</i> = 87:13	30, 92
CO2Bu-r N - کخر - O	Ме	DB (1.0), rt, 7 d	(85) <i>anti:syn</i> = 86:14	91, 30
	Et	PPh ₃ (1.1), 100°, 22 h	(17) ^{<i>a</i>}	59
C ₁₂ MeN Ph	Ме	HQ (0.2), HFI (0.06), 65°, 2 d	(0)	42
	Me NO ₂	DB (1.0), rt, 7 d	(75) anti:syn = 75:25	91

TABLE I-D. REACTIONS OF ACRYLATES WITH HETEROCYCLIC ALDEHYDES (Continued)

^a The product was a mixture of diastereomers; also formed were R¹CH=CHCH₂CO₂Et (34%) and R¹CHOHCH=CHCO₂Et (18%).

Aldehyde	Acrylate	Conditions	Proc	luct(s) and Yield(s) (%)	Refs.
OHC ^{-X} _CHO I X	CO ₂ Me II I:II		HO CO ₂ Me	MeO ₂ C OH OH B	
C5 <i>Z</i> ~~ <i>S</i> ²	1:2	DB (0.5), rt, 72 h	$\mathbf{A}(0)^{a}$		126, 71
C ₆	1:2 1:5	DB (0.5), THF, rt, 4 h DB (1.0), rt, 27 h	A (50) B (60)		126, 71, 131
22 S JE	1:2 1:5	DB (0.5), rt, 2 h DB (1.0), rt, 48 h	A (67) B (67)		126, 71 126, 71
C8	1:2	DB (0.5), rt, 8 h	<b>A</b> (0) ^{<i>b</i>}		126
مح مح	1:5	DB (0.5), rt, 5 h	A (85) + B (10)		71, 126
st tr	1:5	DB (0.5), LiCl, (0.1), rt, 2 h	<b>A</b> (82) + <b>B</b> (18)		71
	1:10	DB (1.0), rt,72 h	<b>A</b> (2) + <b>B</b> (96)		71, 126, 131
25	1:2	DB (0.5), 20°, 2.5 h	<b>A</b> (94) + <b>B</b> (4)		71, 126, 131, 336a
<i>کر ک</i>	1:10	DB (1.0), 20°, 96 h	<b>A</b> (2) + <b>B</b> (96)		71, 126, 128, 131, 336a
CI CI OMe	1:3	HQ (0.3), rt, 12 d	<b>B</b> (86)		131
Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl C	1:3	HQ (0.3), rt, 22 d	<b>B</b> (10)		131
	1:2 1:5	DB (0.5), THF, п, 72 h DB (1.0), п, 84 h	A (55) B (94)		126, 71 126, 71
-\$-{>-}	_ 1:2 1:5	DB (0.5), THF, rt, 20 d DB (1.0), rt, 96 h	A (56) B (86)		126, 71 126, 71
	] 1:3	HQ (0.3), rt, 21 d	<b>B</b> (94)		131

TABLE L-F	<b>REACTIONS OF METH</b>	HYL ACRYLATE WIT	H DIAL DEHYDES
I ADLU I-L.	KEACHONS OF MEH	ILL ACKILATE WIT	



Aldehyde	Allenic Ester	Conditions	Product(s) and Yield(s) (%)	Refs.
3			EtOH	
EtCHO	CH2 ^C CO2Et	DB (0.14), Et ₂ O, -6 to 23°, 16 h	$CH = C CO_2 Et$ (41)	112, 337
7				
n-C ₆ H ₁₃ CHO	CH=CCCO2Et	DB (0.14), Et ₂ O,	(54)	112, 337
		0 to 25°, 34 h	CH ₂ ^C CO ₂ Et	

TABLE I-F. REACTIONS OF ALLENIC ESTERS WITH ALDEHYDES

TABLE II-A. REACTIONS OF ACRYLAMIDES WITH ALDEHYDES

	Aldehyde	Acrylamide	Conditions	Product(s) and Yield(s) (%)	Refs.
R ¹ CHO		COR ²	$HO \rightarrow R^1$		
	R ¹	R ²		COR ²	
$C_2$	Me	NH ₂	Et ₂ NMe (0.08), 5 kbar, 20°, 3 h	(83) ^{<i>a</i>}	48
5	i-Bu	NMe ₂	_	(0)	119
-6	2-Pyridyl	NH ₂	DB (0.05), rt, 3d	(0)	113
		NMe ₂	DB (0.05), rt, 3d	(0)	113
210	3,4,5-(MeO) ₃ C ₆ H ₂	NH ₂	DB (0.5), MeOH, microwave, 25 min	$(40)^{a}$	76
		NH ₂	DB (0.5), MeOH, rt, 3 d	(0)	75

" No analytical or spectral data were reported.

		2 RCHO + CON	$\xrightarrow{R} \xrightarrow{O} \xrightarrow{R} \xrightarrow{O} (>99\% \text{ de})$	
	R	Conditions	Yield (%)	Refs.
$C_2$	Ме	DB (0.1), CH ₂ Cl ₂ or dioxane, 0°, 12 h	(85)	88a
$C_3$	Et	DB (0.1), CH ₂ Cl ₂ or dioxane, 0°, 12 h	(98)	88a
		DB (0.1), rt, 10 d	(0) <i>"</i>	84
$C_4$	MeCO ₂ CH ₂	DB (0.1), CH ₂ Cl ₂ or dioxane, 0°, 12 h	(68)	88a
	<i>n</i> -Pr	DB (0.1), CH ₂ Cl ₂ or dioxane, 0°, 12 h	(70)	88a
	i-Pr	DB (0.1), CH ₂ Cl ₂ or dioxane, 0°, 12 h	(33)	88a
		DB (0.1), rt, 5 d	(0) ^{<i>b</i>}	84
$C_5$	i-Bu	DB (0.1), CH ₂ Cl ₂ or dioxane, 0°, 12 h	(67)	88a
C7	Ph	DB (0.1), rt, 7 d	(0) ^c	84, 88a
C9	PhCH ₂ CH ₂	DB (0.1), CH ₂ Cl ₂ or dioxane, 0°, 12 h	(68)	88a
C19	TBDPSOCH ₂	DB (0.1), CH ₂ Cl ₂ or dioxane, 0°, 12 h	(40)	88a

TABLE II-B. REACTION	S OF CAMPHOR	Sultam Acrylati	E WITH ALDEHYDES
----------------------	--------------	-----------------	------------------

"Dimer I R = CON was formed in 19% yield.

^b Dimer I was formed in 22% yield.

^c Dimer I was formed in 17% yield.

_	Aldehyde	Acrylonitrile	Conditions	Product(s) and Yield(s) (%)	Refs.
	Navo	n ²		R ^I OH	
	R'CHO	K-m CN		R ² m	
	R ¹	R ²		CN CN	
Cı	H (formalin)	Н	DB (0.04), H ₂ O, rt, 48 h	(66)	46
			DB (0.05), microwave flow reactor, 125-135°	(76) ^{<i>a.b</i>}	74
			Me ₃ N (0.5), H ₂ O, 4-MeOC ₆ H ₄ OH (0.001), 60°, 3 h	(68)	47
	Н	н	DB (	(90)	25, 48
	H (formalin)	Me	DB (0.11), microwave flow reactor, 160-170°	(2) ^c	74
C ₂	Me	н	DB (0.1), rt, 8 d	(87)	338, 1, 49, 117
			Et ₂ NMe (0.02). 8 kbar, 20°, 5 min	(96) ^{<i>a</i>}	49, 25, 48
			HQ (), (+) MeCHOHCO2Et, 5 kbar, rt, 24 h	(81) 3% ee	53
			(1R,2S)-N-Methylephedrine (), 9 kbar, 36°, 100 h	(18) 10% ee	53
			(S)-(-)-Nicotine (), 9 kbar, 35°, 45 h	(15) 11% ee	53
			(S)-1-Methylprolinol (—), 9 kbar, 40°, 74 h	(28) 17% ee	53
			(-)-Quinine, 9 kbar, 60°, 48 h	(0)	53
			P(C ₆ H ₁₁ ) ₃ (0.004), dioxane, pyridine, 120°, 2 h	(25)	13, 7, 14, 17
	Me	Me	DB (0.05), 42°, 14 d	(0)	49
			DB (0.05), 9 kbar, 50°, 18 h	(88) $Z:E = 4.5$	49
C3	Et	Н	DB (0.15), rt, 40 h	(81)	55, 49, 338
			H2N(CH2)3NH2 (0.15), 4-MeOC6H4OH (0.3), rt, 24 h	(92)	44
			Et ₂ NMe (0.06), 8 kbar, 30°, 5 min	(70)"	49, 25
			$P(C_6H_{11})_3$ (0.012), dioxane, reflux, 12 h	(35)	1, 17
			$\{RhH_{n}[(-)DIOP] Me_{2}CO\}^{+} BF_{4}^{-}()$	(—)	69
	Et	Me	DB (0.08), 10 kbar, 55°, 20 h	(—) ^c	49
C4	EtO ₂ C	Н	DB (0.09), 25°, 70 h	(51)	45
	n-Pr	Н	DB (0.1), rt, 9 d	(81)	338, 49
			Et ₂ NMe (0.03), 8 kbar, 45°, 45 min	$(70)^{a}$	49
			$P(C_6H_{11})_3$ (0.02), dioxane, reflux, 16 h	(49)	16
			P("chlorohexyl") ₃ (0.02), dioxane, reflux, 16 h	(67)	7

### TABLE III-A. REACTIONS OF ACRYLONITRILES WITH ALIPHATIC AND ALICYCLIC ALDEHYDES

	Aldehyde	Acrylonitrile	Conditions	Product(s) and Yield(s) (%)	Refs.
	NGUO	<b>p</b> ²		R ^I OH	
	K'CHO	K-www.CN		R ² m CN	
	<u>R¹</u>	<u>R²</u>			
	<i>i</i> -Pr	Н	DB (0.1), rt, 10 d	(87)	338, 49. 55
			Et ₂ NMe (0.03), 8 kbar, 40°, 1h	(85) ^{<i>a</i>}	49
			$P(C_6H_{11})_3$ (0.006), dioxane, N ₂ , 120-130°, 2 h	$(-)^d$	17
	(MeO) ₂ CH	н	DB (0.1), MeOH (0.35), 4-MeOC ₆ H ₄ OH (0.0002), rt, 9 d	(52)	330
C5	$MeO_2C(CH_2)_2$	н	DB (0.1), rt, 5 d	(38)	125
	<i>n</i> -Bu	н	DB ()	(—)	261
			<i>n</i> -Bu ₃ P (0.2), Et ₃ Al (0.1), C ₆ H ₁₄ , CH ₂ Cl ₂ , 80°, 22 h	(90) ^e	64
	- D.,		$P(C_6H_{11})_3$ (0.012), pyridine, cyclohexane, 40°, 20 h	(88)	14
	s-Bu	н	DB (0.1), ft, 14 d	(66)^	55 271
~	<i>i-Bu</i>	н	DB (0.15), rt, 40 h	(69)	55, 2/1
-6	$n-C_5H_{11}$	п	$DB(0.3), \pi, 3 d$	(87)	55, 201 7
C-	3 Cycloberenyl	U	$P(C_6H_{11})_3 + CS_2 (0.016)$ , dioxane, 120°, 12 h DB (0.1) $\neq$ 12 d	(—) (77)	7 338 40 11
C7	5-Cyclollexellyl	п	DB(0.1), R, 12 d Et NMa (0.1), 0 kbar 20% 1 b	(77)	336, <del>4</del> 9, 11 40
	Cuclobarul	U	$El_2(Mie (0,1), 9 \text{ kbar}, 20^\circ, 1 \text{ h})$	(63)	49
	Cyclonexyl	п	DB(0,1), R, 210	(81)	536
			$P(C_1H_1) = CS_2(0.16)$ , dioxane 120° 12 h	(70)	7
	* C U	u	$P(0.15) \neq 4.4$	(74)	261 332
~	<i>n</i> -C ₆ n ₁₃	n u	D(0,15), 11, 40	(74)	7
C8	DII T C U	н	$P(C_{6}H_{11})_{3} = CS_{2}(0.016)$ , dioxane, 120°, 12 h	()	7 17
~	<i>n</i> -C ₇ H ₁₅	н	$P(C_6H_{11})_3 \bullet CS_2 (0.016)$ , dioxane, 120°, 12 n	(45)	7, 17
-9	PnCH ₂ CH ₂ Cyclooctyl	н	DB(0.15), rt, 50 h $P(C_{2}H_{12})_{2}eCS_{2}(0.016)$ , dioxane, 120°, 12 h	(76)	55 7
		11	$r(c_6 r_1 _{1/3}^3 c_5 c_2)$ (0.010), dioxane, 120 , 12 ii	(—)	,
C ₁₀	2	Н	DB (0.15), rt, 7 d	(85)	331
	nique	n ²		RI	
	K [*] CHU	K m CN		$\mathbf{R}^2$	
	<u>R</u> ¹	<u>R²</u>		· CN	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ч	$DP(0.05)$ have a hydroguinene ( ) 8 khor $\neq$ 18 h	(70)	8 <b>1</b>
		п	DB (0.03), nexane, nydroquinone (—), 8 kbar, rt, 18 n	(70)	82
	n-CoH10	н	DB (0.3), rt. 7 d	(84)	55
	7.17	н	$n-Bu_2P(0,2)$, Et ₂ Al (0,1), hexanes, CH ₂ Cl ₂ , 80°, 22 h	(74)	64
	(n-BuO) ₂ CH	н	DB (0.1), <i>n</i> -BuOH (0.01), 4-MeOC ₆ H ₄ OH (0.0002), rt, 9 d	(57)	330
	~3*				
CII	S.	Н	DB (0.2), hydroquinone (), THF, 12 kbar, rt, 18 h	(90)	82
	↓ ↓ ↓ ↓				
C	June -	н	DB (0.15) + 10d	(54)	261 332
C12			<i>bb</i> (0.15), it, io a	(34)	201, 332
C ₁₉	4.NCC.H.	н	HQ (0.32), rt, 48 h	(80)	213, 316
C ₂₃	TRODEC	н	DB (—), rt	(—)	305
c		и	110 (0.22) - 48 b	(90)	212
- 24	4-NCC ₆ H ₄		11Q (0.52), II, 70 II	(00)	215
	n-C ₆ H ₁₃		$\rightarrow -o_{\underline{1}}$		
.	n=6	<u>∥</u> ~́	$\sqrt{n^2}$	(70)	313
-34 Ca-	n = 10	н	HQ (0.34) rt 48 h	(70)	313
~38	1 - 10	11	112 (0.34), 11, 40 11	(77)	313

TABLE III-A. REACTIONS OF ACRYLONITRILES WITH ALIPHATIC AND ALICYCLIC ALDEHYDES (Continued)

^b The product formed the ether on attempted distillation.

" The product was characterized by mass spectroscopy only.

^d The yield was 70-90% based on unrecovered aldehyde.

" The aldol product was formed in small amounts.

^f The number refers to the conversion.

⁸ The product was a 62:38 mixture of the two diastereomers.

Aldehyde	Acrylonitrile	Conditions	Product(s) and Yield(s) (%)	Refs.
RCHO	CN		R OH	
R			CN	
C ₃ CH ₂ =CH		DB (0.15), rt	$(0)^{a}$	127
$C_4 CH_2 = C(Me)$		DB (0.15), rt, 4 d	(67)	127
MeCH=CH		DB (0.1), rt, 2 d	(59)	117, 127, 338
C9 PhCH=CH (trans)		DB (0.15), rt, 3 d	(20)	127, 76
.1		DB (0,5), microwave, 25 min	(44)	76
		DB (—), 23°	(—)	53
		DB (), 5.5 kbar, 23°, 42 h	(42) 16% de	53

TABLE III-B. REACTIONS OF ACRYLONITRILE WITH OLEFINIC ALDEHYDES

" The product was a polymer.

	Aldehyde	Acrylonitrile	Conditions	Product(s) and Yield(s) (%)	Refs.
	R ¹ CHO	R ² m		R ¹ OH	
	R ¹	R^2		R ² m	
C7	2-CIC ₆ H ₁	н	DB (0.11), rt. 6 h	(55)	117
,	4-CIC ₆ H₄	н	DB(-), rt. 100 h	(91)	128, 127
	0 4		$(C_6H_{11})_3P$ (0.05), dioxane, sealed tube, 30°, 6 h	(79)	7, 17
	3-O2NC6H4	н	DB (0.27), rt, 24 h	(22)	49
			$(C_6H_{11})_3P$ (0.05), dioxane, sealed tube, 30°, 6 h	(74)	7
	4-O2NC6H4	н	DB (0.5), rt, 3 d	(45)	76
			DB (0.5), microwave, rt, 10 min	(95)	76
	Ph	н	DB (0.11), rt, 40 h	(79)	117, 49, 55,
					127, 261
			DB (0.15), H ₂ O, LiI or NaI, rt, 2-3 h	(93)	70
			DB (0.04), 5 kbar, 20°, 5 min	(92)	48, 49
			Ph ₂ P(CH ₂) ₄ OH (0.04), rt, 20 h	(15)	7, 17
			<i>n</i> -Bu ₃ P (0.2), Et ₃ Al (0.1), hexanes, CH_2Cl_2 , 80°, 22 h	(27)	64
			(+) \bigvee_{N}^{Ph} (), 12 kbar, 15 h	(53)" 11% ee	82
	Ph	Me	DB (0,1), CHCl ₂ , 8 kbar, 17 h	() E:Z = 1:1	28, 82
			DB $(0,1)$, CHCl ₂ , 15 kbar, 17 h	() E:Z = 23:1	28, 82
	3,5-(HO) ₂ C ₆ H ₃	н	Et ₃ N (0.19), THF/CHCl ₃ (1:1), 15 kbar, 50°, 19 h	(75)	41
C ₈		н	DB (0.56), rt, 48 h	(95) ^b	130
	4-MeC ₆ H ₄	Н	DB (0.08), 5°, 6 d	(74) ^c	49, 127, 130
			DB (0.08), 42°, 75 h	(78)	49, 261

TABLE III-C. REACTIONS OF ACRYLONITRILES WITH AROMATIC ALDEHYDES

	Aldehyde	Acrylonitrile	Conditions	Product(s) and Yield(s) (%)	Refs.
	R ¹ CHO	R ² CN		R ¹ OH R ² m	
	RI	<u>R²</u>		- CN	
	4-MeC ₆ H ₄	н	DB (0.08), 10 kbar, 40°, 2 h	(64) ^d	49
			(C ₆ H ₁₁) ₃ P (0.05), dioxane, sealed tube, 30°, 6 h	(58)	7.17
	2-MeOC ₆ H ₄	Н	DB (—)	(—)	127
	$(S)-(+)-2-MeOC_6H_4-Cr(CO)_3$	н	DB (0.5), rt, 11 h	(88) >95% de ^e	97
	4-MeOC ₆ H ₄	н	DB (0.5), rt, 3d	(13)	76, 49
			DB (0.06), 5°, 7 d	(43) ^c	49
			DB (0.1), 5.6 kbar, 42°, 21 h	$(25)^{d}$	49, 25
			DB (0.5), microwave, 10 min	(25)	76
			$(C_6H_{11})_3P$ (0.05), dioxane, sealed tube, 30°, 6 h	(80)	7
C,	Br MeO OMe	Н	DB (0.5), rt	(—) ^b	130
	4,5-(MeO) ₂ C ₆ H ₃	н	DB (0.5), rt, 48	(95) ^{<i>h</i>}	130
C ₁₀	4-i-PrC ₆ H ₄	н	DB ()	()	127
	3,4,5-(MeO) ₃ C ₆ H ₂	н	DB (0.5), MeOCH2OMe, H2NCHO, rt, 20-36 h	(>90) ^{<i>b</i>}	130, 76
			DB (0.5), microwave, 10 min	(0) ^r	76
C ₁₁	I-Naphthyl	н	DB (—)	()	127
C ₁₃	4-PhC ₆ H ₄	н	DB (0.11), rt, 6 d	(80)	49
			DB (0.02), 5 kbar, 20°, 2 h	(86)	48, 49

TABLE III-C. REACTIONS OF ACRYLONITRILES WITH AROMATIC ALDEHYDES (Continued)

^{*a*} The number refers to the conversion.

^b The product was a 2:1 complex with DABCO from which the normal adduct could be obtained by treatment with acid; the latter was obtained directly when the isolation ^d The product was a 2.1 complex with DABCO ^r The product was a 2.1 complex with DABCO. ^d The number is the yield of crude product. ^e The product has the *S*,*S* (–) configuration.

Aldehyde	Acrylonitrile	Conditions	Product(s) and Yield(s) (%)	Refs.
RCHO	<i>∕</i> CN		R OH	
R 2-Pyridyl	DB (0	05) rt 3 d	(92)	113
	DB (-), rt	() 0% de	53
	DB (-), 4 kbar, rt, 21 h	(47) 23% de	53
" \OOMe	DB (1.	1), rt, 20 h	(37) ^{<i>a</i>}	339
	DB (1.	1), n, 20 h	(57)"	339
ò-				

TABLE III-D. REACTIONS OF ACRYLONITRILE WITH HETEROCYCLIC ALDEHYDES

" Two diastereomers were formed but only the major isomer was isolated.

TABLE IV. REACTIONS OF $\alpha,\beta-$ Unsaturated Aldehydes with Aldehydes

Aldehyde	Unsaturated Aldehyde	Conditions	Product(s) and Yield(s) (%)	Refs
R ^I CHO R ^I	R ² CHO		R ¹ OH R ² CHO	
H (formalin)	Me	DB (0.0.3), microwave (flow reactor), 165°	(13)	74
Me	н	DB (0.03), 20°, 10 d	(65)	49
		Et ₂ NMe (0.08), 15 kbar, 20°, 25 min	(95)	48, 49
CH ₂ =CH	н	DB (—), 30 min	(204	25
Et	н	DB (0.03), 20°, 10 d	(71)	49
2-Pyridyl	н	DB (0.05), rt. 3d	$(0)^b$	113

^{*a*} No analytical or spectroscopic data were given and the reaction was not mentioned in the full paper (ref. 49). ^{*b*} The acrolein polymerized even in the presence of hydroquinone as radical inhibitor.

	Aldehyde	Ketone	Conditions	Product(s) and Yield(s) (%)	Refs.
	R ¹ CHO	COR ²		R ^I OH	
	R ¹	R ²		COB ²	
C	H (paraformaldehyde)	Me	DB (—), THF, 80°	(—)	309
	H (formalin)	Me	DB (), H ₂ O, <80°	(—)	309
			DB (0.11), microwave flow reactor, 99-101°	(17)	74
	Н	Me	PPh ₃ (0.04), benzene, 30°, 18 h	(34)	61
C_2	Me	Me	DB (0.03), rt, 3.3 d	(90)	49, 117, 252,
					309, 338
			HQ (0.1), CH ₂ Cl ₂ , rt, 20 h ^{<i>a</i>,<i>b</i>}	(72)	340, 33, 341
			H ₂ N(CH ₂) ₃ NH ₂ (0.15), 4-MeOC ₆ H ₄ OH (0.3), rt, 26 h	(55)	44
			Et ₂ NMc (0.03), 4 kbar, 20°, 30 min	(55)	49, 48
			Quinidine (), rt, 7 d	(—) 12% ee	52
			Cinchonidine (), rt, 4.5 d	(—) 10% ee	52
			Brucine (), rt, 4.75 d	() 8% ee	52
			Quinine (), rt, 4.5 d	(—) 8% ee	52
			(S)-(-)-N-Methylprolinol (), rt, 4 d	(—) 0% ee	52
			PPh ₃ (0.04), benzene, 30°, 18 h	(61)	61
	Me	Et	PPh ₃ (0.04), benzene, rt, 16 h	(65)	62
C_3	Et	Me	DB (0.11), rt, 24 h	(84)	117, 49, 252,
					309, 338
			HQ (0.05), CHCl ₃ , 21°, 15 h	(85)	33, 340, 341
			Et ₂ NMe (0.22), 2 kbar, 20°, 2 h	(56)	49
			Ph ₃ P, (0.04), benzene, 30°, 18 h	(63)	61
			RuH ₂ (PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(82)	19, 68
			{RhH _n [(-)DIOP] Me ₂ CO} ⁺ BF ₄ ⁻ (0.01), 105°, 5.5 h	() 23% ee ^c	69
	Et	Et	DB (0.15), rt, 2 d	(61)	118
			PPh ₃ (0.04), benzene, rt, 16 h	(68)	62
			RuH ₂ (PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(87)	19, 68
	Et	<i>i</i> -Pr	DB (0.20), rt, 6 d	(22)	118

TABLE V-A. Reactions of $\alpha,\beta-$ Unsaturated Ketones with Aliphatic and Alicyclic Aldehydes
Aldehyde	Ketone	Conditions	Product(s) and Yield(s) (%)	Refs.
R ¹ CHO			RI_OH	
			Ţ	
<u>R'</u>	R ²			
Et	n-Bu	PPh ₃ (0.04), benzene, rt, 16 h	(79)	62
Et	i-Bu	DB (0.15), rt, 4 d	(31)	118
		RuH ₂ (PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(53)	19
Et	<i>n</i> -C ₅ H ₁₁	PPh ₃ (0.04), benzene, rt, 16 h	(70)	62
Et		RuH ₂ (PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(64)	19
Et	Ph	RhH(PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	$(37)^d$	19
Et	C ₆ H ₁₁	RhH(PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(79)	19
Et	n-C ₆ H ₁₃	PPh ₃ (0.04), benzene, rt, 16 h	(74)	62
Et	n-BuCHEt	RhH(PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(58)	19, 67
Et	Ph(CH ₂) ₂	RuH ₂ (PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(54)	19
Et	<i>n</i> -C ₈ H ₁₇	RhH(PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(70)	19
CO ₂ Et	Me	DB (0.09), rt, overnight	(55)	343
<i>n</i> -Pr	Me	DB (0.15), rt, 7 d	()	252
		PPh ₃ (0.04), benzene, 30°, 16 h	(63)	61
		$R_{h}(PPh_{2})_{4}(0.01)$ <i>i</i> -PrOH (0.2) 40° 40 h	(61)	19 67 68
n-Pr	Et	DB(0.15) rt 2 d	(59)	118
	14	$PPh_{2}(0, 0.4)$ hence rt 16 h	(66)	62
n-Pr	i_Pr	DB(0.20) + 6d	(3)	118
n-11	t-L1	$DDh_{1}(0.04)$ hence -14	(69)	62
D=	1 D	$\Gamma \Gamma \Pi_3 (0.04), \text{ ochizene, } \Pi, \Pi \cap \Pi$	(06)	119
n-PT	<i>i</i> -Bu	DB (0.15), rt, 3 d	(35)	118
<i>I-P</i> T	ме		(63)	338
		$HQ(0.1), CH_2Cl_2, rt, 20 h^{4}$	(62)	340, 341
		PPh_3 (0.04), benzene, 30°, 16 h	(70)	61
		RuH ₂ (PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(72)	19, 68
i-Pr	Et	DB (0.20), rt, 2 d	(60)	118
		PPh ₃ (0.04), benzene, rt, 16 h	(78)	62
<i>i</i> -Pr	n-Pr	PPh ₃ (0.04), benzene, rt, 16 h	(77)	62
R ^I CHO	COR ²		R VIII	
	- 2		COR ²	
<u>R'</u>	<u>R²</u>		COR	
i-Pr	i-Pr	DB (0.20), rt, 6 d	(20)	118
<i>i</i> -Pr	i-Bu	DB (0.15), rt, 4 d	(30)	118
MeO(CH ₂) ₂	Me	DB (0.15), THF, 7 d	()	252
$MeO_2C(CH_2)_2$	Me	DB (0.1), rt, 4 d	(48)	125, 252
<i>n</i> -Bu	Me	PPh ₃ (0.04), benzene, rt, 16 h	(90)	61
<i>n</i> -Bu	Et	PPh ₃ (0.04), benzene, rt, 16 h	(80)	62
s-Bu	Me	DB (0.1), THF, rt, 12 d	(64)	338
s-Bu	Et	PPh ₃ (0.04), benzene, rt, 16 h	(75)	62
i-Bu	Me	DB (0.15), THF, 7 d	(—)	252, 309
		RhH(PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(76)	19, 67
MeOCH ₂ OCHMe	Me	DB (0.1), rt, 2.5 h	(54) anti:syn = 71:29	30, 89
-		HQ (0.1), rt, 20 min	(80) $anti:syn = 71:29$	30, 89
MeO ₂ C(CH ₂) ₃	Me	DB (0.15), THF, 7 d	()	252
n-CsH11	Me	DB (0.15), THF. 3 d	(65)	140.342
t-BuCH	Me	DB(0.15) THE 7.4	()	252
Cvclobervl	Ma	DR(0.1), THE $= 12.4$	(80)	338
сустопскуг	wie	$HO_{1}(0,1), HIIC, H, 100$	(50)	100 2/0
- C U	Ma	DP (0.15) THE = 80 L	(31)	170, 340
<i>n</i> -C ₆ rl ₁₃	ме	DB (0.15), 1HF, rt, 80 h	(73)	140, 342
_		PPh ₃ (0.04), benzene, 30°, 16 h	(43)	61
Bn	Me	DB (0.1), THF, rt, 7 d	(64)	338
<i>n</i> -C ₇ H ₁₅	Me	DB (0.15), THF, rt, 100 h	(63)	140, 117, 34
n-BuCHEt	Me	RuH ₂ (PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(14) ^e	19, 67, 68
$Ph(CH_2)_2$	Me	DB (0.15), THF, rt, 85 h	(65)	140, 252, 30
				342
) MeOCH ₂ OCHPh	Me	DB (0.1), rt, 6 d	(70) $anti:syn = 38:62$	30, 89
				()
/>/\/	Me	PPh ₃ (0.04), benzene, 30°, 16 h	(56)	61
•С•Н.	Ma	DB (0.15) THE # 10.4	(62)	140 342
	141C	(0.13), 111, 10 U	(04)	170, 342

TABLE V-A. REACTIONS OF α,β-UNSATURATED KETONES WITH ALIPHATIC AND ALICYCLIC ALDEHYDES (Contin	nued)

Aldehyde Ketone Conditions Product(s) and Yield(s) (%) Refs. R¹ .OH **R^ICHO** COR² / **R**¹ **R**² C11 BnOCH2OCHMe HQ (0.1), rt, <1 h Me (80) anti:syn = 77:2330 DB (0.2), rt, 4 d (10)^f 82 Me C₁₆ n-C₁₅H₃₁ Me DB (0.15), THF, rt, 15 d (36) 140, 342 .O(CH₂)₅ C₁₉ HQ (0.15), THF, rt, 36 h (64) 213 Me 4-NCC₆H₄ O(CH₂)₁₀ C₂₄ Me HQ (0.15), THF, rt, 36 h (70) 213 4-NCC₆H n-C₆H <u>}</u>{ C₃₄ HQ (0.36), THF, rt, 36 h (76) 313 n = 6 Me C₃₈ n = 10 Me HQ (0.36), THF, rt, 36 h (66) 313

TABLE V-A. REACTIONS OF α,β -UNSATURATED KETONES WITH ALIPHATIC AND ALICYCLIC ALDEHYDES (Continued)

^{*a*} The α , β -unsaturated ketone was added to the aldehyde during 8 hours followed by 12 hours at room temperature (refs. 340, 341).

^b The half-life for a catalyst concentration of 0.05 was 20 minutes (ref. 33).

^c The ee value for this experiment was the best in a series using different chiral catalysts.

^d The dimer $R_2CO(CH_2)_2C(=CH_2)COR_2$ was formed in 45% yield.

 e The dimer $R_{2}CO(CH_{2})_{2}C(=CH_{2})COR_{2}$ was formed in 42% yield.

^f The dimer R₂CO(CH₂)₂C(=CH₂)COR₂ was formed exclusively when the reaction was carried out under 12 kbar pressure.

Aldehyde Ketone Conditions Product(s) and Yield(s) (%) Refs. R1 ,OH COMe R¹CHO **`**COMe RI C₃ CH₂=CH DB (0.15), rt 127 (0)^{*a*} C₄ MeCH=CH DB (0.15), rt (0)^b 127 PPh₃ (0.04), benzene, 30°, 18 h (27)^c 61 CH₂=C(Me) DB (0.15), rt $(0)^b$ 127 C₆ *n*-PrCH=CH PPh3 (0.04), benzene, 30°, 18 h (19)^d 61 C₉ PhCH=CH DB (0.15), rt (0)^{*a*} 127

TABLE V-B. REACTIONS OF α , β -Unsaturated Ketones with Olefinic Aldehydes

^a The product was a polymer.

 $^{\it b}$ The only product isolated was the dimer MeCO(CH_2)_2C(=CH_2)COMe.

 c The dimer MeCO(CH₂)₂C(=CH₂)COMe was formed in 26% yield.

^d The dimer MeCO(CH₂)₂C(=CH₂)COMe was formed in 49% yield.

	Aldehyde		Ketone	Conditions	Product(s) and Yield(s) (%)	Refs.
F	R ¹ CHO	R ²	COR ³		R ¹ OH	
F	R ¹	R ²	R ³		COR3	
7 2	2,4-Cl ₂ C ₆ H ₃	н	Me	DB (0.15), THF, 8 d	(65)	140
4	4-CIC ₆ H ₄	Н	Me	DB (0.15), THF, 8 d	(61)	140
4	4-O ₂ NC ₆ H ₄	Н	Me	$(S,S) = \begin{bmatrix} N \\ N \\ I \\ OR^3 \end{bmatrix}$ R ³ = Bn (0.15), hydroquinone (0.01), THF, 5 kbar, 30°, 12 h L R ³ = TBDPS (0.15), hydroquinine (0.01), THF, rt, 21 d	(45) 47% $ee^{a,b}$ (42) 15% $ee^{b,c}$	39 39
				Retronecine (), rt. 30 d	() 0% ee	52
F	የከ	н	Me	DB (0.11), rt, 30 h	(72)	117, 140, 342
				PPh ₃ (0.04), benzene, 30°, 18 h	(57) ^d	61
				RuH ₂ (PPh ₃) ₄ (0.01), <i>i</i> -PrOH (0.2), 40°, 40 h	(33)	19, 68
F	Ph	Ph	Me	DB (), 15 kbar, 50°, 250 h	(0)	82
F	Ph	н	Et	DB (0.15), rt, 2 d	(58)	118
				PPh ₃ (0.04), rt, 16 h	(55) ^e	62
8 4	I-MeC ₆ H ₄	н	Me	DB (0.15), THF, rt, 9 d	(56)	140

TABLE V-C. REACTIONS OF α , β -UNSATURATED KETONES WITH AROMATIC ALDEHYDES

^d The major product has the S configuration.
 ^b These conditions gave the highest ee values for the formation of the R or S isomer, respectively in experiments with a series of catalysts of type I under 5 kbar or ambient pressure.
 ^c The major product has the R configuration.
 ^d The dimer MeCO(CH₂)₂C(=CH₂)COMe was formed in 29% yield.
 ^e The dimer EtCO(CH₂)₂C(=CH₂)COEt was formed in 32% yield.

TABLE V-D. REACTIONS OF α,β -UNSATURATED KETONES WITH HETEROCYCLIC ALDEHYDES

	Aldehyde	Ketone	Conditions	Product(s) and Yield(s) (%)	Refs.
	RCHO	COMe		R OH	
C5	R 2-Furyl		DB (0.03), THF, rt	()"	342
			PPh ₃ (0.04), benzene, 30°, 18 h	(45) ^b	61
C ₆	2-Pyridyl		DB (0.05), rt, 3 d	(81) ^c	113
	4-Pyridyl		HQ (0.05), rt, t _{1/2} <0.37 min	(85)	33
C9	Vor OMe		DB (0.1), rt, 20 h	(45) ^d	339

" The reaction "was not clean."

^b The dimer MeCO(CH₂)₂C(=CH₂)COMe was formed in 24% yield.

^c The ketone \bigvee COMe was formed in 5% yield.

^d A mixture of diastereomers was formed, but only the major isomer of unknown stereochemistry was isolated.

	Aldehyde		Vinyl Reactant	Conditions	Product(s) and Yield(s) (%)	Refs.
	RCHO		O) _n ∖(O) _m ^{Ph}		$(O)_n$	
	R	m	<u>n</u>		0 ¹ (0) ² (0)	
21	H (paraformaldehyde)	0	1	DB (0.1), THF, reflux, 2 d	(33)	80
C_2	Me	0	0	DB (—), rt	(0)	56
	Ме	0	1	DB (0.1), rt, 2 wks	(84)	56, 80, 152, 233, 234
		0	1	DB (), "high pressure, fast"	()	81
3	Et	0	1	DB (0.1), rt, 11 d	(33)	234, 56, 80
		0	1	DB (), 0.2 kbar," 8 d	(33)	80, 344
4	MeCH=CH	0	1	DB (0.1), rt	(0)	56
	<i>n</i> -Pr	0	1	DB (0.1), rt, 4 wks	(75)	56, 80, 152,
						233, 234
	<i>i</i> -Pr	0	1	DB (0.1), THF, rt, 50 d	(24)	152, 56
5	2-Furyl	0	1	DB (0.1), rt, 3 wks	(20)	56
	n-Bu	0	1	DB (0.1), rt, 10 wks	(79)	56, 233
	i-Bu	0	1	DB (0.1), rt, 11 wks	(81)	56, 80, 233, 234
	i-Bu	1	1	DB (0.1), benzene, rt, 3 h	(87)	119
	t-Bu	0	1	DB (0.1), rt, 21 wks	(10)	56
6	3-Pyridyl	0	1	DB (0.1), rt, 1 d	(46)	80
7	Ph	0	0	DB (0.1), 19 kbar, rt, 48 h	("satisfactory") ^b	81
	Ph	0	1	DB (0.1), rt, 3 wks	(57)	56, 80, 233, 234
9	Ph(CH ₂) ₂	0	1	DB (0.1), rt, 21 d	(36)	80, 234
210	Ph(CH ₂) ₃	0	1	DB (0.1), rt, 15 d	(67)	80
512		0	1	DB (0.1), rt, 8 wks	(47)	234, 256

TABLE VI. REACTIONS OF VINYL SULFOXIDES, VINYL SULFONES, AND VINYLSULFONATES WITH ALDEHYDES

" At 6 kbar, the yield was reported to be 0%; other workers, however, did not experience this problem (ref. 81).

^b A 1:1 mixture of diastereomers was formed.

Alde	hyde	Vinylphosphonate	Conditions	Product(s) and Yield(s) (%)	Refs.
RCHO		P(O)(OEt) ₂		R OH P(O)(OEt)2	
H (formalin)			DB (), H ₂ O	(0)	120
Ме			DB (0.2), rt, 7 d	(83)	120
Et			DB (0.2), rt, 10 d	(78)	120
<i>n</i> -Pr			DB (0.2), rt, 10 d	(73)	120
i-Pr			DB (0.2), rt, 14 d	(74)	120
n-Bu			DB (0.3), rt, 21 d	(68)	120
i-Bu			DB (0.3), rt, 29 d	(54)	120

TABLE VII. REACTIONS OF DIETHYL VINYLPHOSPHONATE WITH ALDEHYDES

	Ketone			Olefin	Conditions	Product(s) and Yield(s) (%)	Refs
	R ¹ COR ²	ł	³ ~ ~]	R ⁴		$R^1 \xrightarrow{R^2} OH$	
	R ¹	R ²	R ³	R ⁴		R ⁴	
3	Cl ₂ FC	CCl ₂ F	н	CN	DB (0.1), THF, 20°, 5 h	(35)	115
	Cl ₂ FC	CCl ₂ F	Н	СНО	DB (0.1), THF, 20°, 3 h	(81)	115
	Cl ₂ FC	CCl ₂ F	Н	CO ₂ Et	DB (0.1), THF, 20°, 16 h	(84)	115
	F ₃ C	CF ₂ Br	Н	CO ₂ Et	DB (0.1), THF, 20°, 16 h	(39)	115
	F ₃ C	CF ₃	Н	СНО	DB (0.1), THF, 20°	(—) ^a	115
	F ₃ C	CF ₃	Н	CO ₂ Me	HQ (0.2), HFI (0.06), 20°, 6.5 h	(57)	42
	F ₃ C	CF ₃	н	CO ₂ Et	DB (0.1), THF, 20°, 3 h	(47)	115
	Me	Me	Н	CN	DB (0.1), 40°, 14 d	(0)	25, 49
					Et ₂ NMe (0.08), THF, 12 kbar, 20°, 1 h	(92)	48, 25, 49
	Ме	Me	Н	CO ₂ Bu-n	DB (0.41), sealed tube, 120°, 4.6 d	$(7)^{b}$	74
	Me	Me	Me	CN	DB (0.08), 10 kbar, 55°, 20 h	("low") ^c	49
	Ме	Me	н	CONH ₂	DB (), 5 kbar, 17 h	$(5)^d$	25
	Me	Me	н	CO ₂ Me	DB (), 5 kbar, 2 h	$(0)^e$	25
4	Me	Et	Н	CN	DB (0.06), 40°, 14 d	(0)	49
					DB (0.06), 10 kbar, 26°, 20 h	(14)	49, 48
	Me	Et	н	CO ₂ Me	DB (—), 5 kbar, 2 h	(0) ^e	25
6	-(CH ₂) ₅ -		Н	CN	DB (0.02), 40°, 14 d	(0)	49
					DB (0.01), 9 kbar, 26°, 1 h	(42)	49, 25
9	-(CH2)2N(Pr-i)(CH2	2)2-	н	CO ₂ Me	HQ (0.2), HFI (0.06), 65°, 2d	(0)	42

TABLE VIII. REACTIONS OF ACTIVATED OLEFINS WITH MONOKETONES

" The product could not be separated from the solvent.

 b The number is the conversion. The product was characterized by mass spectroscopy only.

 $^{\rm c}$ Two products were formed in a ratio of 40:1; they were characterized by mass spectroscopy only.

^d No analytical or spectral data were reported.

e The reports (ref. 25) that acetone and methyl ethyl ketone react with methyl acrylate under pressure are in error (ref. 79).

Diketone	R	Conditions	Product(s) and Yie	ld(s) (%) Re	efs.
	R CO2Me	HQ (0.2), HFI (0.06), 20°, 24 h	CI CI O OH CO ₂ Me	(0) ^{<i>a</i>} 42	
	CN	DB ()	OH CN	(—) ^b 345	
C7 0	CN	HQ (0.13), rt, 24 h	OH OH CN	(8) 114	
	CO ₂ Me	HQ (0.05), HFI (0.0015), rt, 36 h	O OH OH CO ₂ Me	(88) 42	
↓↓ ↓ ↓ ↓			O O R		
	CN	НQ (0.1), п, 3 d	(100)	114	
	СНО	HQ (0.1), THF, rt, 5 d	(72)	114	
	CO ₂ Me	HQ ()	$(0)^{a}$	114	
C ₁₀ 0	CN	DB ()	OH CN	(—) ^c 345	
\sim					

TABLE IX. REACTIONS OF ACTIVATED OLEFINS WITH POLYKETONES

Diketone	R	Conditions	Product(s) and Yield(s) (%)	Refs.
o o	<u>R</u>		о	
	CN CHO CO₂Me	НQ (0.1), п, 18 d / HQ (0.1), п, 17 d	$R = (73)^{d,e} \\ (0)^{e} \\ (0)^{b}$	114 114 114
o			HO O	
X	CN CHO CO₂Me	HQ (0.27), rt, 24 h HQ (0.27), rt, 24 h HQ (0.27), rt, 24 h	(68) (0) ^g (0) ^b	114 114 114
o	CN, CHO, CO ₂ Me	_	OH R (0) ^{<i>ii</i>}	114
C ₁₁ 0 0			O OH R	
	CN CHO CO₂Me	HQ (0.02), rt, 24 h HQ (—) HQ (0.02), rt, 24 h	(70) (0) ^k (0) ^b	114 114 114
C ₁₄ 0 0	<u>R</u> CN	DB (—)	OH (-) ^c	345

TABLE IX. REACTIONS OF ACTIVATED OLEFINS WITH POLYKETONES (Continued)

" There was no reaction.

^b The product was a complex mixture.

^c The yield was "unsatisfactory."

^d The regio- and stereochemistry are tentative.

 ~ 0 was obtained in 12% yield. " In some experiments, the diadduct

NC $^{\it f}$ The reaction was tried with DABCO, 3-hydroxyquinuclidine, Ph_3P, or Et_3N, neat or in THF or benzene,

`CN

at -78° to room temperature, with or without sonication.

⁸ The acrolein polymerized.

 h No reaction occurred with acrylonitrile or methyl acrylate; with acrolein, polymerization took place.

_	Ke	tone	Olefin	Conditions	Product(s) and Yield(s) (%)	Refs.
	R ¹ COCO ₂ R ²		№ R ³		$R^1 \xrightarrow{OH} CO_2 R^2$	
	R ^I	R ²	R ³		\mathbb{R}^3	
C ₄	F ₃ C	Me	CN	DB (0.1), 20°, 2 h	(30)	115
	F ₃ C	Me	СНО	DB (0.1), 20°, 1 h	(57)	115
	F ₃ C	Me	COMe	DB (0.1), 20°, 1 h	(80)	115
	Me	Me	CN	DB (0.15), rt, 24 h	(38)	134
	Me	Me	CO ₂ Me	DB (0.15), rt, 14 d	(78)	254
C5	F ₃ C	Me	CO ₂ Et	DB (0.1), 20°, 3 h	(72)	115
	Me	Et	CN	DB (0.15), rt, 24 h	(41)	134
C ₆	-CH ₂ C(Me) ₂ -	-	CN	HQ (0.2), rt, 24 h	(81)	114
	-CH2C(Me)2-	-	СНО	HQ (0.2), rt, 3 d	(31)	114
	-CH ₂ C(Me) ₂ -	-	CO ₂ Me	HQ ()	(0)	114
C7	EtO ₂ C	Et	CN	DB (0.1), THF, rt, 3 h	(80)	133
	EtO ₂ C	Et	COMe	DB (0.05), rt, 30 min	(74)	133
	EtO ₂ C	Et	CO ₂ Me	DB (0.1), THF, rt, 4 h	(77)	133
	EtO ₂ C	Et	CO ₂ Et	DB (0.1), THF, rt, 6 h	(73)	133
	EtO ₂ C	Et	CO ₂ Bu-t	DB (0.1), THF, rt, 36 h	(67)	133
CIO	Ph	Et	CN	DB (0.3), rt, 5 d	(65)	134
	Ph	Et	CO ₂ Me	DB (0.3), rt, 7 d	(49)	134
CI	4-MeC ₆ H ₄	Et	CN	DB (0.3), rt, 7 d	(74)	134
	4-MeC ₆ H ₄	Et	CO ₂ Me	DB (0.3), rt, 9 d	(41)	134

TABLE X. REACTIONS OF ACTIVATED OLEFINS WITH α -Ketoesters and α -Ketolactones

	Ir	nine		Olefin	Conditions	Product(s) and Yield(s) (%) Refs
$R^1 \xrightarrow{N} R^3$			R ⁴ n	~~		R ¹ NHR ³ R ⁴ R ⁵	
R ¹	R ²	R ³	R ⁴	R ⁵		K	
С3 Н	н	Me ₂ "	н	COMe	MeCN, rt, 1.5 h	(88) [/]	135
C ₆ <i>n</i> −Pr	Н	Ts ^c	н	CO ₂ Me	PPh ₃ (0.008), <i>i</i> -PrOH (cat.), 40°, 40 h	(80)	18
-7 CF3	CF ₃	2-Pyrimidyl	н	CN	DB ("pinch"), THF, rt, "rapid"	$ \underbrace{ \begin{array}{c} N \\ N \\ N \\ L(85) \end{array} }^{N \\ CF_3 \\ R^5 } $	137
CF ₃	CF ₃	2-Pyrimidyl	н	СНО	DB ("pinch"), THF, rt, "rapid"	I (53)	137
CF ₃	CF ₃	2-Pyrimidyl	н	COMe	DB ("pinch"), THF, rt, "rapid"	I (87)	137
CF ₃	CF ₃	2-Pyrimidyl	н	COEt	DB ("pinch"), THF, rt, "rapid"	I (93)	137
CF ₃	CF ₃	2-Pyrimidyl	н	CO ₂ Et	DB ("pinch"), THF, rt, "rapid"	I (55)	137
CF ₃	CF ₃	2-Pyrimidyl	н	CO ₂ Bu-t	DB ("pinch"), THF, rt, "rapid"	I (80)	137
8 Ph	н	CO ₂ Me	н	CO ₂ Me	DB (0.2), rt, 16 h	$(80)^{d}$	136
2 ₁₀ CF ₃	CF ₃	2-Benzothiazolyl	Н	CN	DB ("pinch"), THF, rt, "rapid"		137
						I (52) R ⁵	
CF ₃	CF ₃	2-Benzothiazolyl	н	СНО	DB ("pinch"), THF, rt, "rapid"	I (29)	137
CF ₃	CF ₃	2-Benzothiazolyl	н	COMe	DB ("pinch"), THF, rt, "rapid"	1 (95)	137
CF ₃	CF ₃	2-Benzothiazolyl	н	COEt	DB ("pinch"), THF, n, "rapid"	I (93)	137
CF ₃	CF ₃	2-Benzothiazolyl	Н	CO ₂ Et	DB ("pinch"), THF, rt, "rapid"	I (82)	137
CF ₃	CF ₃	2-Benzothiazolyl	н	CO ₂ Bu-t	DB ("pinch"), THF, rt, "rapid"	I (86)	137

TABLE XI. REACTIONS OF ACTIVATED OLEFINS WITH IMINES AND IMINIUM SALTS

	In	nine		Olefin	Conditions	Product(s) and Yield(s) (%)	Refs.
R ¹ N _B 3			P 4	10		$R^1 $ NH R^3	
$\mathbf{r}^{\mathbf{R}^2}$ \mathbf{R}^2			King	R ⁵		P4	
R ¹	R ²	R ³	R ⁴	R ⁵		R5	
CF ₃	CF ₃	COPh	н	CN	DB ("pinch"), THF, rt, 2 h	(68)	116
CF ₃	CF ₃	COPh	н	СНО	DB ("pinch"), THF, rt, 36 s	(38)	116
CF ₃	CF ₃	COPh	н	COMe	DB ("pinch"), THF, rt, 6 min	(51)	116
CF ₃	CF ₃	COPh	н	COEt	DB ("pinch"), THF, rt, 6 min	(91)	116
CF ₃	CF ₃	COPh	н	CO ₂ Et	DB ("pinch"), THF, rt, 24 h	(69)	116
CF ₃	CF ₃	COPh	н	CO ₂ Bu-t	DB ("pinch"), THF, rt, 24 h	(67)	116
11 CF ₃	CF ₃	COC ₆ H ₄ Me-4	н	CN	DB ("pinch"), THF, rt, 2.5 h	(52) ^e	116
CF ₃	CF ₃	COC ₆ H ₄ Me-4	н	СНО	DB ("pinch"), THF, rt, 36 s	(27)	116
CF ₃	CF ₃	COC ₆ H ₄ Me-4	н	COMe	DB ("pinch"), THF, rt, 6 min	(89) [∫]	116
CF ₃	CF ₃	COC ₆ H ₄ Me-4	н	COEt	DB ("pinch"), THF, rt, 6 min	(88) ^g	116
CF ₃	CF ₃	COC ₆ H ₄ Me-4	н	CO ₂ Et	DB ("pinch"), THF, rt, 36 h	$(62)^{h}$	116
CF3	CF ₃	COC ₆ H ₄ Me-4	н	CO ₂ Bu-t	DB ("pinch"), THF, rt, 42 h	(88) ⁱ	116
Ph	н	Boc	н	COMe	PPh ₃ (0.008), <i>i</i> -PrOH (cat.), 40°. 4	0 h (50)	18
12 2-ClC ₆ H ₄ •Cr(CO) ₃	н	C ₆ H ₁₁	н	CN	DB (0.5), 20°. 6 h	(0)	97, 98
13 2-MeC ₆ H ₄ •Cr(CO) ₃	н	C ₆ H ₁₁	н	CN	DB (0.5), 20°. 6 h	(0)	97, 98
2-MeOC ₆ H ₄ •Cr(CO) ₃	н	C ₆ H ₁₁	н	CN	DB (0.5), 20°. 6 h	(0)	97, 98
2-FC ₆ H ₄	н	Ts	н	CO ₂ Me	DB (—)	()	306
2-ClC ₆ H ₄	н	Ts	н	CO ₂ Me	DB ()	()	306
$(\pm)-2-ClC_6H_4$ •Cr(CO) ₃	н	Ts	н	CN	DB (0.5), rt, 1-6 h	(55) >95% de	98
3-O ₂ NC ₆ H ₄	н	Ts	н	CO ₂ Et	DB (0.1), 80°, 17 h	(53)	138, 346
Ph	н	Ts	н	CO ₂ Me	DB (0.1), 80°, 17 h	(45)	138
Ph	н	Ts ^c	н	CO ₂ Me	PPh ₃ (0.008), <i>i</i> -PrOH (cat.), 40°, 4	0 h (98) ^j	18
Ph	н	Ts ^c	Me	CO ₂ Me	PPh ₂ (0.008), <i>i</i> -PrOH (cat.), 40°, 40	0h (0)	18
Ph	н	Ts	Н	CO ₂ Et	DB (0.1), 80°, 17 h	(80)	138, 346
Ph	н	Ts	н	CO ₂ Bu-t	DB (0.1), 80°, 17 h	(60)	138
						. R ²	
			R ⁴ ~			R ¹ NHR ³	
\mathbf{R}^2				~ R ³		R ⁴ m R ⁵	
<u>R¹</u>	R ²	R ³	R ⁴	R ⁵			
14 Ph	Н	CBz ^c	Н	CO ₂ Me	PPh ₃ (0.008), <i>i</i> -PrOH (cat.), 40°, 40	0 h (53)	18
2-MeC ₆ H ₄	н	Ts	н	CO ₂ Me	DB (—)	(—)	306
(\pm) -2-MeC ₆ H ₄ •Cr(CO) ₃	н	Ts	н	CN	DB (0.5), rt, 1-6 h	(82) 68% de	98
4-MeC ₆ H ₄	Н	Ts	н	CO ₂ Me	DB (0.1), 80°, 17 h	(72)	138, 346
2-MeO	н	Ts	н	CO ₂ Me	DB ()	(—)	306
(\pm) -2-MeOC ₆ H ₄ •Cr(CO) ₃	н	Ts	н	CN	DB (0.5), rt, 1-6 h	(87) >95% de	98, 97
$(+)-2-MeOC_6H_4$ •Cr(CO) ₃	н	Ts	н	CN	DB (0.5), rt, 1-6 h	(88) >95% de	98
(\pm) -2-MeOC ₆ H ₄ •Cr(CO) ₃	н	Ts	н	CO ₂ Me	DB (0.5), rt, 1-6 h	(93) >95% de	98
$(-)-2-MeOC_6H_4$ •Cr(CO) ₃	Н	Ts	н	CO ₂ Me	DB (0.5), rt, 1-6 h	(88) >95% de	98
4-MeOC ₆ H ₄	Н	Ts	н	CO ₂ Et	DB (0.1), 80°, 17 h	(72)	138, 346
$_{15}$ 2,5-(MeO) ₂ C ₆ H ₃ •Cr(CO) ₃	н	Ts	н	CN	DB (0.5), rt, 1-6 h	(85) >95% de	98
$2,5-(MeO)_2C_6H_3$ •Cr(CO) ₃	н	Ts	н	CO ₂ Me	DB (0.5), rt, 1-6 h	(65) >95% de	98
						$2-CIC_6H_4$	
18 CF ₃	CF ₃	$C(C_6H_4Cl-2)=NC_6H_3Me_2-2,6$	н	CN	DB ("pinch"), THF, 50°, 3 d	$ \int CF_3$	137
						$2,6-Me_2C_6H_3$ R ⁵	
CF.	ar			0110		1 (07) L (22)	127
CF3	CF ₃	$C(C_6H_4CI-2)=NC_6H_3Me_2-2,6$	H 	СНО	DB ("pinch"), THF, 50°, 3 d	I (32)	137
CF ₃	CF ₃	$C(C_6H_4Cl-2)=NC_6H_3Me_2-2,6$	н	СОМе	DB ("pinch"), THF, 50°, 3 d	I (70)	137
CF ₃	CF ₃	$C(C_6H_4Cl-2)=NC_6H_3Me_2-2,6$	н	COEt	DB ("pinch"), THF, 50°, 3 d	I (83) Dh N CF3	137
CF ₃	CF ₂	C(Ph)=NC+H2Me2-2.4.6	н	CN	DB ("pinch"). THF. 50°. 3 d	CF.	137
3	y	- () Or a Zaran J water	••		2	,4,6-Me ₃ C ₆ H ₃ N R ⁵	
						I (71)	
CE.	CE	C(Ph)=NC.H.Ma 246	ч	CHO	DB ("ninch") THE 500 2 d	I (28)	137
CF ₃ CF ₃	CF3	$C(Ph)=NC_6H_2Me_3-2,4,6$ $C(Ph)=NC_6H_2Me_3-2.4.6$	Н Н	CHO COMe	DB ("pinch"), THF, 50°, 3 d DB ("pinch"), THF, 50°, 3 d	I (28) I (67)	137 137

TABLE XI. REACTIONS OF ACTIVATED OLEFINS WITH IMINES AND IMINIUM SALTS (Continued)

TABLE XI. REACTIONS OF ACTIVATED OLEFINS WITH IMINES AND IMINIUM SALTS (Continued)

Imine	Olefin	Conditions	Product(s) and Yield(s) (%)	Refs.
" The substrate was CH₂=NMe₂ ⁺ Cl ⁻ .				
CH ₂ NHMe				
"The product was CIT .				
^c The imine was prepared in situ from the aldehyde R ¹ CHO and the amide R ³	NH ₂ .			
^d The number is the yield of crude product.				
"The oxazine 4 -MeC ₆ H ₄ O CF_3 was formed in 7% yield (ref. 137)).			
^f The oxazine I was formed in 5% yield (ref. 137).				
^g The oxazine I was formed in 4% yield (ref. 137).				
^h The oxazine I was formed in 5% yield (ref. 137).				
ⁱ The oxazine I was formed in 4% yield (ref. 137).				

^jThere was no asymmetric induction when chiraphos was used in place of triphenylphosphine.

TABLE XII. INTRAMOLECULAR REACTIONS

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
L		но	
0		CO ₂ Et	
CO ₂ Et	DB (0.15), rt, 32 d	(0) <i>"</i>	29
	P(Bu-n) ₃	(39) ^b	29
	(0.25), rt, 1 d	(50)	29
	PPhMeBu-i	(40) 14% ee	29
	(0.25), rt, 30 d	$(0)^d$	29
1	(–)-CAMP, ^c	НО	
	(0.18), rt, 10 d	CO ₂ Et	
CO ₂ Et	NaOEt (1.0), EtOH, -30° to rt, 2 h		
	DB (0.25), rt, 1 d	(0)	29
	PPhMe ₂ (0.25), rt, 6 d	(17)	29
	Lithium quinidate (0.25), HMPA, rt, 2 h	(23) 6% ee^{e}	29
	HQ (lithium salt of <i>R</i> isomer) (0.25), HMPA, 0°, 30 min	(8) 0% ee	29

TABLE XII. INTRAMOLECULAR REACTIONS (Continued)

Substrate Conditions Product(s) and Yield(s) (%) Refs. .СНО OH (10) 32 / + Cl⁻ (70) + 0 <u>ک</u> " The product was an 81:19 mixture of the trans and cis isomers of the substrate. ^{*b*} A comparable yield was obtained with PPhMe₂ as the catalyst. ^c CAMP is $(I, R = C_6H_{11})$. With (-)-PAMP (I; R = Ph), no reaction occurred. ^d The product was the cyclic ether $EtO \xrightarrow{O} CO_2Et$ (40%) in addition to 10% of unreacted substrate. ^e The isomerized ester ^e The isomerized ester was formed in 6% yield.

			CO ₂ R	
	CO ₂ R		CO ₂ R	
	R	Conditions	Yield (%)	Refs.
C4	Me	DB (0.2-1.0), rt, 30 d	(0)	139
		DB (0.05), 4 kbar, 36°, 23 h	(25) ^{<i>a</i>}	49
		P(Bu-n) ₃ (0.1), 0°, 1 h	(62)	50, 347
		Ph2PCH2PPh2 (0.001), 80°, 18 h	(64)	348
		PPh ₃ (0.1), 4.9 kbar, 50°, 4 h	(50)	50
C ₅	Et	DB (0.05), 20°, 4 d	(0)	49
		DB (0.02), 4 kbar, 36°, 23 h	(9) ^b	40
		P(NMe ₂) ₃ (0.2), 60°, 2 h	(61)	349
		P(Bu-n) ₃ (0.09), MeCN, 40-45°, 3 h	(46)	350
		Ph ₂ PCH ₂ PPh ₂ (0.002), 100°, 18 h	(12)	348, 351
C7	t-Bu	P(NMe ₂) ₃ (0.1), 20°, 16 h	(72)	349
C ₈	CHMeCO ₂ Et	DB (0.4), rt, 14 d	(89)	139
C9	4-O2NC6H4	DB (0.2), THF, rt, 9 h	(99)	139
	Ph	DB (0.2), rt, 15 h	(98)	139
	o t t t t t t t t t t t t t t t t t t t	DB (0.2), rt, 10 h	(100)	139
C10	4-MeC ₆ H ₄	DB (0.2), rt, 15 h	(98)	130
C ₁₃	CH(Ph)CO2Et	DB (0.4), rt, 8 d	(95)	139

TABLE XIII-A. DIMERIZATION OF ACRYLATES

" The trimer (6%), tetramer (1.5%), and pentamer (0.4%) were also formed.

^b The trimer was formed in 2.5% yield.

	COR		COR		
	R	Conditions	Yield (%)	Refs.	
C ₁₃	(+) O_2S $-N_{r^{r^{r}}}$	DB (1.0), Me ₂ CHCHO, 5 d	(22)	84	
	(-) -I	DB (1.0), Me ₂ CHCHO, 5 d	(23)	84	

TABLE XIII-B. DIMERIZATION OF ACRYLAMIDES

TABLE XIII-C. DIMERIZATION OF ACRYLONITRILE

CN		CN	
	Conditions	Yield (%)	Refs.
	DB (0.5), rt, 10 d	(40)	140. 352
	DB (0.01), 4 kbar, 36°, 23 h	(65) ^{<i>a.b</i>}	49
	P(Bu-n) ₃ (0.016), MeCN, t-BuOH, 45-50°, 2 h	(11)	351
	P(C ₆ H ₄ Me-4) ₃ (0.004), Et ₃ SiOH, 160°, 11 h	(21) ^c	353
	P(Bu-n) ₃ (0.01), CH ₂ =CHCO ₂ Et, t-BuOH, 102°, 7 h	(9) ^d	353

" The trimer was formed in 12% yield.

^b A polymer was formed in the presence of pyridine (ref. 357).

^c The β -addition product NC(CH₂)₂CH=CHCN was formed in 5% yield.

^d The ethyl acrylate dimer CH₂=C(CO₂Et)(CH₂)₂CO₂Et (5%) and the mixed dimer

CH2=C(CO2Et)(CH2)2CN (10%) were also formed.

R ¹					
	Ri	R ²	Conditions	Yield (%)	Refs.
C₄	н	Me	DB (0.11), rt, 7 d	(80)	117
			DB (0.15), THF, rt, 4 d	(59)	140, 352
			$P(C_6H_{11})_3$ -CS ₂ (0.02), dioxane, rt, 24 h	(82)	354
			PPh3 (0,02), t-BuOH, 25°, 24 h	(72)	355, 353
		N <i>i</i>	RhCl(PMe ₃) ₃ (0.005), Me ₂ CO, 80°, 5 h	(24)	356
C5	н	<u> </u>	RhCl(PMe ₃) ₃ (0.005), Me ₂ CO, 80°, 5 h	(5)	356
	н	Et	DB (0.15), rt, 40 h	(60)	352, 140
			PPh ₃ (0.04), benzene, 25-30°, 12 h	(62)	358
C ₆	Н	CH ₂ OAc	DB (0.15), THF, rt, 1 h	(63)	140
	н	n-Pr	PPh ₃ (0.04), benzene, 25-30°, 12 h	(68)	358
	н	i-Pr	PPh ₃ (0.04), benzene, 25-30°, 12 h	(78)	358
C 7	н	t-Bu	PPh ₃ (0.04), benzene, 25-30°, 12 h	(59)	358
			RhCl(PMe ₃) ₃ (0.005), Me ₂ CO, 80°, 5 h	(32)	356
	-(Cl	H ₂) ₃	DBU (), 1,3-dimethyl-2-imidazolidinone, 185°, 24 h	(85) ^a	57
C ₈	Н	5-Me-2-furyl	RhCl(PMe ₃) ₃ (0.005), Me ₂ CO, 80°, 5 h	(91)	356
	Н	n-C5H11	PPh ₃ (0.04), benzene, 25-30°, 12 h	(77)	358
C9	н	4-ClC ₆ H ₄	DB (0.15), rt, THF, 4 h	(70)	140
	Н	Ph	DB (0.15), 35°, 15 min	(62)	140, 352
			PPh ₃ (0.04), benzene, 25-30°, 12 h	(42)	358
			RhCl(PMe ₃) ₃ (0.005), Me ₂ CO, 80°, 5 h	(99)	356
	н	n-C ₆ H ₁₃	PPh ₃ (0.04), benzene, 25-30°, 12 h	(85)	358
C ₁₀	н	4-MeC ₆ H ₄	DB (0.15), 35°, 1 h	(49)	140, 352
			RhCl(PMe ₃) ₃ (0.005), Me ₂ CO, 80°, 5 h	(99)	356
	н	4-MeOC ₆ H ₄	DB (0.15), THF, rt, 24 h	(73)	140
C ₁₃	н	I-Naphthyl	RhCl(PMe ₃) ₃ (0.005), Me ₂ CO, 80°, 5 h	(92)	356

TABLE XIII-D. DIMERIZATION OF $\alpha_{s}\beta\text{--}UNSATURATED$ Ketones

^{*a*} In the presence of ethyl acrylate, acrylonitrile, or phenyl vinyl sulfone, α -substituted 2-cyclohexen-1-ones are formed, probably via the dienolate.

11. Acknowledgments

I gratefully acknowledge the many colleagues who furnished preprints and other unpublished material and/or took the time to answer questions about their published work. I am indebted to Prof. Scott Denmark for helpful advice, to Drs. Todd Nelson and Alexander Hurd for sharing their bibliographies, and to Dr. Tadamichi Fukunaga for translations from the Japanese. The Du Pont Merck Pharmaceutical Company and E. I. du Pont de Nemours & Co. graciously granted access to their library and other information services. Last, but not least, I am greatly indebted to Dr. Robert M. Joyce for the Herculean task of converting the mixed-format tables into ChemDraw[™] and preparing the manuscript for the printer.

References

- Baylis, A. B.; Hillman, M. E. D. *Ger. Offen.* 2,155,113 (1972); Chem. Abstr. 1972, **77**, 34174q; Hillman, M. E. D.; Baylis, A. B. *U.S. Patent* 3,743,669 (1973).
- 2. In the patents of ref. 1 only boiling points of the products were reported. Other examples in the patents deal with the extension of the reaction to other aldehydes and tertiary amine catalysts as well as to activated olefins such as α , β -unsaturated ketones, acrylamides, and nitroethylene. Since not even boiling points were reported for the products of these transformations, they probably represent "paper examples" which the inventors surmised would be successful but which were not actually carried out.
- Culbertson, B. M.; Post, L. K. U. S. Patent 4,279,833 (1981); Chem. Abstr. 1982, 96, 70542j.
- 4. Drewes, S. E.; Emslie, N. D. J. Chem Soc., Perkin Trans. 1 1982, 2079.
- 5. Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1983, **22**, 795.
- 6. This has been pointed out before: see ref. 20, p. 4656.
- Toyo Rayon Co. French Patent 1,506,132 (1967); Chem. Abstr. 1969, 70, 19613u.
- 8. Morita, K. *Japan. Patent* 68 03,364 (1968); Chem. Abstr. 1968, **69**, 58828s.
- Morita, K.; Kinoshita, Y.; Nakanishi, R. *Japan. Patent* 68 16364 (1968); Chem. Abstr. 1969, **70**, 67642z; *Japan. Patent* 69 20,085 (1969); Chem. Abstr. 1969, **71**, 123630d.
- Morita, K.; Mizushima, T.; Kitagawa, H.; Sakai, H. *Ger. Offen.* 1,906,220 (1969); Chem. Abstr. 1969, **71**, 114063u.
- Morita, K.; Miyaji, H. Japan. Patent 70 17164 (1970); Chem. Abstr. 1970, 73, 66728g.
- Morita, K.; Miyaji, H. Japan. Patent 70 09526 (1970); Chem. Abstr. 1970, 72, 132968t.
- Morita, K.; Hirose, H.; Suzuki, Z. Japan. Patent 70 02,362 (1970); Chem. Abstr. 1970, 72, 100093n.
- Morita, K.; Hirose, H. Japan. Patent 70 27,089 (1970); Chem. Abstr. 1971, 74, 53097w.
- Morita, K.; Hirose, H. Japan. Kokai 73 92,620 (1973); Chem. Abstr. 1974, 80, 122326h.
- Morita, K.; Suzuki, Y.; Hirose, H. Japan. Patent 70 02,361 (1970); Chem. Abstr. 1970, **72**, 100092m.
- 17. Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.

- 18. Bertenshaw, S.; Kahn, M. Tetrahedron Lett. 1989, 30, 2731.
- 19. Sato, S.; Matsuda, I.; Shibata, M. J. Organomet. Chem. 1989, 377, 347.
- 20. Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653.
- 21. Oda, R. Kagaku (Kyoto) 1988, **43**, 208; Chem. Abstr. 1988, **109**, 23395r.
- 22. Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, **52**, 8001.
- 23. Mathias, L. J.; Kosefoglu, S. H.; Kress, A. O. Macromolecules 1987, **20**, 2326.
- 24. Perlmutter, P.; Puniani, E.; Westman, G. Tetrahedron Lett. 1996, **37**, 1715.
- 25. Hill, J. S.; Isaacs, N. S. Tetrahedron Lett. 1986, 27, 5007.
- 26. Hill, J. S.; Isaacs, N. S. J. Phys. Org. Chem. 1990, 3, 285.
- 27. Fort, Y.; Berthe, M. C.; Caubère, P. Tetrahedron 1992, 48, 6371.
- 28. van Rozendaal, E. L. M.; Voss, B. M. W.; Scheeren, H. W. Tetrahedron 1993, **49**, 6931.
- 29. Roth, F.; Gygax, P.; Fráter, G. Tetrahedron Lett. 1992, **33**, 1045.
- 30. Manickum, T.; Roos, G. H. P. S. Afr. J. Chem. 1994, 47, 1.
- 31. Bode, M. L.; Kaye, P. T. Tetrahedron Lett. 1991, 32, 5611.
- Drewes, S. E.; Njamela, O. L.; Emslie, N. D.; Ramesar, N.; Field, J. S. Synth. Commun. 1993, 23, 2807.
- Drewes, S. E.; Freese, S. D.; Emslie, N. D.; Roos, G. H. P. Synth. Commun. 1988, 18, 1565.
- Ameer, F.; Drewes, S. E.; Freese, S.; Kaye, P. T. Synth. Commun. 1988, 18, 495.
- Drewes, S. E.; Freese, S. E.; Roos, G. H. P. unpublished results cited in ref. 20 (ref. 23).
- 36. Drewes, S. E.; Emslie, N. D. University of Natal, Pietermaritzburg, South Africa, personal communication.
- 36a. Hoffmann, H. M. R. University of Hannover, Germany, personal communication.
 - 37. Hine, J.; Chen, Y.-J. J. Org. Chem. 1987, 52, 2091.
 - 38. Grob, C. A. Helv. Chim. Acta 1985, 68, 882.
 - Oishi, T.; Oguri, H.; Hirama, M. Tetrahedron Asymmetry 1995, 6, 1241; for the synthesis of the chiral catalysts see Oishi, T.; Hirama, M. Tetrahedron Lett. 1992, 33, 639.
- 40. Alvarez, F. J.; O'Connor, K. M. *PCT Int. Appl.* 93 07886 (1993); Chem. Abstr. 1993, **119**, 160821x.
- Schuurman, R. J. W.; v. d. Linden, A.; Grimbergen, R. P. F.; Nolte, R. J. M.; Scheeren, H. W. Tetrahedron 1996, **52**, 8307.
- 42. Vojkovsky, T. Abstr. 211th Meeting of the American Chemical Society,

New Orleans, 1996, ORGN 288.

- 43. Hoffmann, H. M. R.; Gassner, A.; Eggert, U. Chem. Ber. 1991, **124**, 2475.
- 44. Oohashi, K.; Ido, S. *Jpn. Kokai Tokkyo Kohu* 05 17,375 (1993); Chem. Abstr. 1993, **118**, 254552s.
- 45. Fikentscher, R.; Hahn, E.; Kud, A.; Oftring, A. *Ger. Offen.* 3,444,097 (1986); Chem. Abstr. 1987, **107**, 7781s; *U. S. Patent* 4,652,669 (1987).
- Fikentscher, R.; Hahn, E.; Kud, A.; Oftring, A. Ger. Offen. 3,444,098 (1986); Chem. Abstr. 1986, **105**, 115538k; U. S. Patent 4,654,432 (1987).
- 47. Nakagawa, K.; Makino, M.; Kita, Y. *Eur. Patent Appl.* 669,312 (1995); Chem. Abstr. 1995, **123**, 285218v.
- 48. Isaacs, N. S.; Hill, J. *Eur. Patent Appl. EP* 196,708 (1986); Chem. Abstr. 1987, **106**, 19155h.
- 49. Hill, J. S.; Isaacs, N. S. J. Chem. Res. (S) 1988, 330; J. Chem. Res. (M) 1988, 2641.
- Moiseenkov, A. M.; Cheskis, B. A.; Shpiro, N. A.; Stashina, G. A.; Zhulin, V. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1990, 595; Engl. transl. p. 517.
- 51. Brand, M.; Drewes, S. E.; Loizou, G.; Roos, G. H. P. Synth. Commun. 1987, **17**, 795.
- 52. Drewes, S. E.; Roos, G. H. P. unpublished results cited in ref. 20, p. 4659.
- Gilbert, A.; Heritage, T. W.; Isaacs, N. S. Tetrahedron Asymmetry 1991, 2, 969.
- 54. Bode, M. L.; English, R. B.; Kaye, P. T. S. Afr. J. Chem. 1992, 45, 25.
- 55. Basavaiah, D.; Gowriswari, V. V. L. Synth. Commun. 1987, **17**, 587.
- 56. Auvray, P.; Knochel, P.; Normant, J. F. Tetrahedron 1988, 44, 6095.
- 57. Hwu, J. R.; Hakimelahi, G. H.; Chou, C.-T. Tetrahedron Lett. 1992, **33**, 6469.
- 58. Hwu, J. R. Tsing Hua University, Hsinchu, Taiwan, personal communication.
- Kovács, I.; Herczegh, P.; Batta, G.; Jekö, J.; Renaud, A.; Sztaricskai, F. J. J. Carbohydr. Chem. 1992, **11**, 867.
- 60. Oda, R.; Kawabata, T.; Tanimoto, S. Tetrahedron Lett. 1964, 1653.
- Miyakoshi, T.; Omichi, H.; Saito, S. Nippon Kagaku Kaishi 1980, 44; Chem. Abstr. 1980, 92, 146214u.
- Miyakoshi, T.; Saito, S. Nippon Kagaku Kaishi 1983, 1623; Chem. Abstr. 1984, **100**, 156191g.
- 63. Rafel, S.; Leahy, J. W. J. Org. Chem. 1997, 62, 1521.
- 64. Imagawa, T.; Uemura, K.; Nagai, Z.; Kawanisi, M. Synth. Commun.

1984, **14**, 1267.

- Miyakoshi, T.; Omichi, H.; Saito, S. Nippon Kagaku Kaishi 1979, 748; Chem. Abstr. 1979, 91, 123360d.
- 66. Brzezinski, L. J. unpublished results quoted in ref. 63.
- 67. Sato, S.; Matsuda, I.; Izumi, Y. Chem. Lett. 1985, 1875.
- 68. Matsuda, I.; Shibata, M.; Sato, S. J. Organomet. Chem. 1988, 340, C5.
- 69. Roos, G. H. P.; Haines, R. J.; Raab, C. E. Synth. Commun. 1993, **23**, 1251.
- 70. Augé, J.; Lubin, N.; Lubineau, A. Tetrahedron Lett. 1994, **35**, 7947.
- Berthe, M. C.; Caubère, P.; Fort, Y. *Eur. Patent Appl.* 465,293 (1992);
 Chem. Abstr. 1992, **116**, 152605c; *U. S. Patent* 5,332,836 (1994).
- 72. Roos, G. H. P.; Rampersadh, P. Synth. Commun. 1993, 23, 1261.
- 73. Roush, W. R.; Brown, B. B. J. Org. Chem. 1993, 58, 2151.
- 74. Strauss, C. R.; Galbraith, M. N.; Faux, A. F. PCT Int. Appl. 91 18,861 (1991); Chem. Abstr. 1992, **116**, 128185v.
- 75. Cablewski, T.; Faux, A. F.; Strauss, C. R. J. Org. Chem. 1994, 59, 3408.
- Kundu, M. K.; Mukherjee, S. B.; Balu, N.; Padmakumar, R.; Bhat, S. V. Synlett 1994, 444.
- 77. Giguerre, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Tetrahedron Lett. 1986, **27**, 4945.
- Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. Tetrahedron Lett. 1986, 27, 279.
- Isaacs, N. S., University of Reading, England, personal communication to Dauben, W. G., University of California, Berkeley; cf. also ref. 49, p. 2669.
- 80. Weichert, A.; Hoffmann, H. M. R. J. Org. Chem. 1991, 56, 4098.
- Ando, D.; Bevan, C.; Brown, J. M.; Price, D. W. J. Chem. Soc., Chem. Commun. 1992, 592.
- 82. van Rozendaal, H. L. M. *Ph.D. Thesis*, Catholic University Nijmegen, The Netherlands, 1994.
- 83. Drewes, S. E.; Emslie, N. D.; Khan, A. A. Synth. Commun. 1993, **23**, 1215.
- 84. Jensen, K. N.; Roos, G. H. P. S. Afr. J. Chem. 1992, 45, 112.
- 85. Brown, J, M.; Cutting, I.; Evans, P. L.; Maddox, P. J. Tetrahedron Lett. 1986, **27**, 3307.
- Basavaiah, D.; Gowriswari, V. V. L.; Sarma, P. K. S.; Rao, P. D. Tetrahedron Lett. 1990, **31**, 1621.
- 87. Oppolzer, W.; Robbiani, C.; Bättig, C. Helv. Chim. Acta 1980, 63, 2015.
- 88. Khan, A. A.; Emslie, N. D.; Drewes, S. E.; Field, J. S.; Ramesar, N.

Chem. Ber. 1993, **126**, 1477.

- 88a. Brzezinski, L. J.; Rafel, S.; Leahy, J. W. J. Am. Chem. Soc. 1997, **119**, 4317.
- 89. Drewes, S. E.; Manickum, T.; Roos, G. H. P. Synth. Commun. 1988, **18**, 1065.
- 90. Drewes, S. E.; Njamela, O. L.; Roos, G. H. P. Chem. Ber. 1990, **123**, 2455.
- 91. Drewes, S. E.; Khan, A. A.; Rowland, K. Synth. Commun., 1993, **23**, 183.
- 92. Manickum, T.; Roos, G. Synth. Commun. 1991, 21, 2269.
- 93. The designations of *syn* and *anti* are those used in the original paper and are based on the proposal of Masamune, S.; Ali, S. A.; Snitman, D. L.; Garvey, D. S. Angew. Chem., Int. Ed. Engl. 1980, **19**, 557.
- 94. Roos, G. H. P.; Watson, M. C. S. Afr. J. Chem. 1991, 44, 95.
- 95. Roos, G. H. P.; Manickum, T.; Malissar, D. G. J. Chinese Chem. Soc. 1992, **39**, 105.
- Roos, G. H. P.; Manickum, T.; Field, J. S.; Ramesar, N. S. Afr. J. Chem. 1994, 47, 33.
- 97. Kündig, E. P.; Xu, L. H.; Romanens, P.; Bernardinelli, G. Tetrahedron Lett. 1993, **34**, 7049.
- 98. Kündig, E. P.; Xu, L. H.; Schnell, B. Synlett 1994, 413.
- 99. Oi, R.; Sharpless, K. B. Tetrahedron Lett. 1991, **32**, 4853.
- 100. Fuji, K.; Tanaka, K.; Takasu, K. Tetrahedron Asymmetry 1996, 7, 1749.
- 101. Soai, K.; Oshio, A.; Yoneyama, H. Tetrahedron Asymmetry 1992, **3**, 359.
- 102. Fuji, K. Institute for Chemical Research, Kyoto University, Japan, personal communication.
- 103. Barrett, A. G. M.; Kamimura, A. J. Chem. Soc., Chem. Commun. 1995, 1755.
- 104. Drewes, S. E.; Emslie, N. D.; Field, J. S.; Khan, A. A.; Ramesar, N. Tetrahedron Asymmetry 1992, **3**, 255.
- 105. Kitamura, M.; Kasahara, I.; Manabe, K.; Noyori, R.; Takaya, H. J. Org. Chem. 1988, **53**, 708.
- 106. Burgess, K.; Jennings, L. D. J. Org. Chem. 1990, 55, 1138.
- 107. Basavaiah, D.; Rao, P. D. Synth. Commun. 1994, 24, 917.
- 108. Murata, M.; Chiba, T.; Shirai, F.; Washizuka, K.; Hino, M. *Eur. Pat. Appl.* 421,283 (1991); Chem. Abstr. 1991, **115**, 112844c.
- 109. Takagi, M.; Yamamoto, K. Tetrahedron 1991, 47, 8869.
- Drewes, S. E.; Emslie, N. D.; Karodia, N.; Khan, A. A. Chem. Ber. 1990, 123, 1447.

- 111. Basavaiah, D.; Sarma, P. K. S. Synth. Commun. 1990, 20, 1611.
- 112. Tsuboi, S.; Kuroda, H.; Takatsuka, S.; Fukawa, T.; Sakai, T.; Utaka, M. J. Org. Chem. 1993, **58**, 5952.
- 113. Bode, M. L.; Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1993, 1809; 1990, 2612.
- 114. Strunz, G. M.; Bethell, R.; Sampson, G.; White, P. Can. J. Chem. 1995, **73**, 1666.
- 115. Golubev, A. S.; Galakhov, M. V.; Kolomiets, A. F.; Fokin, A. V. Izv. Akad. Nauk, Ser. Khim. 1992, 2763; Engl. transl. p. 2193.
- 116. Cyrener, J.; Burger, K. Monatsh. Chem. 1994, **125**, 1279.
- 117. Amri, H.; Villieras, J. Tetrahedron Lett. 1986, 27, 4307.
- 118. Basavaiah, D.; Bharathi, T. K.; Gowriswari, V. V. L. Synth. Commun. 1987, **17**, 1893.
- 119. Wang, S.-Z.; Yamamoto, K.; Yamada, H.; Takahashi, T. Tetrahedron 1992, **48**, 2333.
- 120. Amri, H.; El Gaied, M. M.; Villieras, J. Synth. Commun. 1990, 20, 659.
- 121. Unpublished work carried out at Atochem, Paris, France, and cited in ref. 71.
- 122. Basavaiah, D.; Saguna Hyma, R. Tetrahedron 1996, **52**, 1253.
- 123. Perlmutter, P.; Tabone, M. J. Org. Chem. 1995, 60, 6515.
- 124. Poly, W.; Schomburg, D.; Hoffmann, H. M. R. J. Org. Chem. 1988, 83, 3701.
- 125. Perlmutter, P.; McCarthy, T. D. Aust. J. Chem. 1993, 46, 253.
- 126. Fort, Y.; Berthe, M.- C.; Caubère, P. Synth. Commun. 1992, 22, 1265.
- 127. van Heerden, F. R.; Huyser, J. J.; Holzapfel, C. W. Synth. Commun. 1994, **24**, 2863.
- 128. Foucaud, A.; le Rouillé, E. Synthesis 1990, 787.
- 129. Foucaud, A.; El Guemmout, F. Bull. Soc. Chim. Fr. 1989, 403.
- 130. Becker, A. *French Demande* 2,602,507 (1988); Chem. Abstr. 1989, **110**, 75549j; *U. S. Patent* 4,789,743 (1988).
- 131. Bauchat, P.; Le Bras, N.; Rigal, L.; Foucaud, A. Tetrahedron 1994, **50**, 7815.
- 132. Ciganek, E. J. Org. Chem. 1995, 60, 4635.
- 133. Basavaiah, D.; Gowriswari, V. V. L. Synth. Commun. 1989, 19, 2461.
- 134. Basavaiah, D.; Bharathi, T. K.; Gowriswari, V. V. L. Tetrahedron Lett. 1987, **28**, 4351.
- 135. Koldovski, A. B.; Milyutin, I. A.; Kalinin, V. N. Dokl. Akad. Nauk SSSR 1992, **324**, 1015; Engl. transl. p. 119.
- 136. Yamamoto, K.; Takagi, M.; Tsuji, J. Bull. Chem. Soc. Jpn. 1988, 61, 319.

- 137. Cyrener, J.; Burger, K. Monatsh. Chem. 1995, **126**, 319.
- 138. Campi, E. M.; Holmes, A.; Perlmutter, P.; Teo, C. C. Aust. J. Chem. 1995, **48**, 1535.
- 139. Drewes, S. E.; Emslie, N. D.; Korodia, N. Synth. Commun. 1990, **20**, 1915.
- 140. Basavaiah, D.; Gowriswari, V. V. L.; Rao, P. D.; Bharathi, T. K. J. Chem. Res. (S) 1995, 267; J. Chem. Res. (M) 1995, 1656.
- 141. Hine, J.; Houston, J. G.; Jensen, J. H.; Mulders, J. J. Am. Chem. Soc. 1965, **87**, 5050.
- 142. Mathias, L. J.; Kosefoglu, S. H. *U. S. Patent* 4,889,948 (1989); Chem. Abstr. 1990, **112**, 236009s; *U. S. Patent* 4,999,410 (1991).
- 143. Drewes, S. E.; Loizou, G.; Roos, G. H. P. Synth. Commun. 1987, **17**, 291.
- 144. Field, J. S.; Ramesar, N.; Manickum, T.; Roos, G. H. P. S. Afr. J. Chem. 1993, 46, 39.
- 145. Feit, B.-A.; Mirelman, D.; Zilkha, A. J. Appl. Polym. Sci. 1965, 9, 2459.
- 146. Feit, B.-A.; Melamed, U.; Speer, H.; Schmidt, R. R. J. Chem. Soc., Perkin Trans. 1 1984, 775; Melamed, U.; Feit, B. A. J. Org. Chem. 1983, 48, 1928.
- 147. Tronchet, J. M. J.; Zerelli, S.; Dolatshahi, N.; Türler, H. Chem. Pharm. Bull. 1988, 36, 3722.
- Feit, B. A.; Melamed, U.; Schmidt, R. R.; Speer, H. Tetrahedron 1981, 37, 2143.
- 149. Feit, B. A.; Melamed, U.; Schmidt, R. R.; Speer, H. J. Chem. Soc., Perkin Trans. 1 1981, 1329.
- 150. Melamed, U.; Feit, B. A. J. Chem. Soc., Perkin Trans. 1 1978, 1232.
- 151. Schmidt, R. R.; Speer, H. Synthesis, 1979, 797.
- 152. Jackson, R. F. W.; Standen, S. P.; Clegg, W.; McCamley, A. Tetrahedron Lett. 1992, 33, 6197; J. Chem. Soc., Perkin Trans. 1 1995, 141.
- 153. Eisch, J. J.; Galle, J. E. J. Org. Chem. 1979, 44, 3279.
- 154. Tsuda, T.; Yoshida, T.; Saegusa, T. J. Org. Chem. 1988, 53, 1037.
- 155. Xu, L.-H.; Kündig, E. P. Helv. Chim. Acta 1994, 77, 1480.
- 156. Semmelhack, M. F.; Wu, E. S. C. J. Am. Chem. Soc. 1976, 98, 3384.
- 157. Rosenthal, R. W.; Greco, N. P. *U. S. Patent* 3,006,165 (1962); Chem. Abstr. 1963, **58**, 7833c.
- 158. Culvenor, C. C. J.; Geissman, T. A. J. Am. Chem. Soc. 1961, 83, 1647.
- 159. Marino, J. P.; Floyd, D. M. Tetrahedron Lett. 1975, 3897.
- 160. Quendo, A.; Ali, S. M.; Rousseau, G. J. Org. Chem. 1992, 57, 6890.

- 161. Sato, Y.; Hitomi, K. J. Chem. Soc., Chem. Commun. 1983, 170.
- 162. Sato, Y.; Takeuchi, S. Synthesis 1983, 734.
- 163. Matsumoto, K.; Oshima, K.; Utimoto, K. Chem. Lett. 1994, 1211.
- 164. Su, Z.; Tamm, C. Helv. Chim. Acta 1995, 78, 1278.
- 165. Branca, S. J.; Smith, A. B. III J. Am. Chem. Soc. 1978, **100**, 7767.
- 166. Guaciaro, M. A.; Wovkulich, P. M.; Smith, A. B. III Tetrahedron Lett. 1978, 4661.
- 167. Goldberg, O.; Deja, I.; Rey, M.; Dreiding, A. S. Helv. Chim. Acta 1980,63, 2455 and references cited therein.
- Banfi, L.; Colombo, L.; Gennari, C.; Scolastico, C. J. Chem. Soc., Chem. Commun. 1983, 1112.
- 169. Banfi, L.; Bernardi, A.; Colombo, L.; Gennari, C.; Scolastico, C. J. Org. Chem. 1984, 49, 3784.
- 170. Papageorgiu, C.; Benezra, C. J. Org. Chem. 1985, 50, 157.
- 171. Brand, M.; Drewes, S. E. G.; Roos, G. H. P. Synth. Commun. 1986, **16**, 883.
- 172. Bernardi, A.; Beretta, M. G.; Colombo, L.; Gennari, C.; Poli, G.; Scolastico, C. J. Org. Chem. 1985, **50**, 4442.
- 173. Banfi, L.; Cabri, W.; Poli, G.; Potenza, D.; Scolastico, C. J. Org. Chem. 1987, **52**, 5452.
- 174. Petasis, N. A.; Teets, K. A. J. Am. Chem. Soc. 1992, **114**, 10328.
- 175. Brand, M.; Drewes, S. E.; Emslie, N. D.; Khan, A. A. Synth. Commun. 1991, **21**, 727.
- 176. Shono, T.; Matsumura, Y.; Kashimura, S.; Hatanaka, K. J. Am. Chem. Soc. 1979, **101**, 4752.
- 177. Barbier, P.; Benezra, C. J. Med. Chem. 1986, 29, 868.
- 178. Calderón, A.; Font, J.; de March, P. Tetrahedron 1992, 48, 5347.
- 179. Papageorgiu, C.; Benezra, C. Tetrahedron Lett. 1984, 25, 1303.
- 180. Bernardi, A.; Cardani, S.; Colombo, L.; Poli, G.; Schimperna, G.; Scolastico, C. J. Org. Chem. 1987, **52**, 888.
- 181. Seebach, D.; Henning, R.; Mukhopadhyay, T. Chem. Ber. 1982, **115**, 1705.
- 182. Nishitani, K.; Isozaki, M.; Yamakawa, K. Chem. Pharm. Bull. 1990, 38, 28.
- 183. Nishitani, K.; Konomi, T.; Mimaki, Y.; Tsunoda, T.; Yamakawa, K. Heterocycles 1993, 36, 1957.
- 184. Muruoka, O.; Toyooka, N.; Ohshima, Y.; Narita, N.; Momose, T. Heterocycles 1989, **29**, 269.
- 185. Kita, Y.; Shibata, N.; Miki, T.; Takemura, Y.; Tamura, O. Chem. Pharm.

Bull. 1992, **40**, 12.

- 186. Aiai, M.; Baudy-Floc'h, M.; Robert, A.; Le Grel, P. Synthesis 1996, 403.
- 187. Chapdelaine, M. J.; Hulce, M. Org. React. 1990, 38, 225.
- Hosomi, A.; Yanagi, T.; Hojo, M. Tetrahedron Lett. 1991, **32**, 2371; Hojo, M.; Nagayoshi, M.; Fujii, A.; Yanagi, T.; Ishibashi, N.; Miura, K.; Hosomi, A. Chem. Lett. 1994, 719.
- 189. Itoh, A.; Ozawa, S.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1981, 54, 274; Itoh, A.; Ozawa, S.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1980, 21, 361.
- Bailey, M.; Staton, I.; Ashton, P. R.; Markó, I. E.; Ollis, W. D. Tetrahedron Asymmetry 1991, 2, 495; Bailey, M.; Markó, I. E.; Ollis, W. D. Tetrahedron Lett. 1991, 32, 2687.
- Marson, C. M.; Benzies, D. W. M.; Hobson, A. D. Tetrahedron 1991, 47, 5491; Marson, C. M.; Benzies, D. W. M.; Hobson, A. D.; Adams, H.; Bailey, N. A. J. Chem. Soc., Chem. Commun. 1990, 1516.
- 192. Kim, S.; Park, J. H.; Kim, Y. G.; Lee, J. M. J. Chem. Soc., Chem. Commun. 1993, 1188.
- 193. Kim, S.; Kim, Y. G.; Park, J. H. Tetrahedron Lett. 1991, 32, 2043.
- 194. Leonard, W. R.; Livinghouse, T. J. Org. Chem. 1985, 50, 730.
- 195. Suzuki, M.; Kawagishi, T.; Noyori, R. Tetrahedron Lett. 1981, 22, 1809.
- 196. Wellcome Foundation Ltd. *Neth. Patent Appl.* 6,615,287 (1967); Chem. Abstr. 1968, **68**, 69032h.
- 197. Adam, W.; Braun, M.; Griesbeck, A.; Lucchini, V.; Staab, E.; Will, N. J. Am. Chem. Soc. 1989, **111**, 103.
- 198. Adam, W.; Albert, R.; Hasemann, L.; Nava Salgado, V. O.; Nestler, B.; Peters, E.-M.; Peters, K.; Prechtl, F.; von Schneering, H. G. J. Org. Chem. 1991, 56, 5782.
- 199. Adam, W.; Albert, R.; Grau, N. D.; Hasemann, L.; Nestler, B.; Peters, E.-M.; Peters, K.; Prechtl, F.; von Schnering, H. G. J. Org. Chem. 1991, 56, 5778.
- 200. Adam, W.; Nestler, B. Justus Liebigs Ann. Chem. 1990, 1051.
- 201. Adam, W.; Hoch, U.; Saha-Möller, C. R.; Schreier, P. Angew. Chem., Int. Ed. Engl. 1993, **32**, 1737.
- 202. Adam, W.; Griesbeck, A. Synthesis 1986, 1050.
- 203. Brown, J. M.; James, A. P. J. Chem. Soc., Chem. Commun. 1987, 181.
- 204. Gopalan, B.; Rajagopalan, K.; Sunitha, K.; Balasubramanian, K. K. Tetrahedron 1985, 41, 3153; Gopalan, B.; Rajagopalan, K.; Swaminathan, S.; Balasubramanian, K. K. Tetrahedron Lett. 1975, 1507.
- 205. Gopalan, B.; Rajagopalan, K.; Swaminathan, S.; Balasubramanian, K.

K. Synthesis 1975, 599.

- 206. Villieras, J.; Rambaud, M. Synthesis 1982, 924.
- 207. Villieras, J.; Rambaud, M. Org. Synth. 1988, 66, 220.
- 208. Ferris, A. F. J. Org. Chem. 1955, 20, 780.
- 209. Rambaud, M.; del Vecchio, A.; Villieras, J. Synth. Commun. 1984, **14**, 833.
- 210. Corbet, J.-P.; Benezra, C. Tetrahedron Lett. 1979, 4003.
- 211. Hoffmann, H. R. M.; Vogt, U. Synlett 1990, 581.
- 212. Marshall, L. A.; Steiner, K. E.; Schiehser, G. A. U. S. Patent 4,788,304 (1988); Chem. Abstr. 1989, 110, 135069q; U.S. Patent 4,933,365 (1990); Chem. Abstr. 1990, 113, 126604v.
- 213. Hall, A. W.; Lacey, D.; Hill, J. S.; McDonnell, D. G. Supramol. Sci. 1994, 1, 21.
- 214. Basavaiah, D.; Pandiaraju, S.; Padmaja, K. Synlett 1996, 393.
- 215. McFadden, H. G.; Harris, R. L. N.; Jenkins, C. L. D. Aust. J. Chem. 1989, **42**, 301.
- 216. Hoffmann, H. M. R.; Rabe, J. J. Org. Chem. 1985, 50, 3849.
- 217. Ameer, F.; Drewes, S. E.; Houston-McMillan, M. S.; Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1985, 1143.
- 218. Buchholz, R.; Hoffmann, H. M. R. Helv. Chim. Acta 1991, 74, 1213.
- 219. Ameer, F.; Drewes, S. E.; Field, J. S.; Kaye, P. T. S. Afr. J. Chem. 1985, 38, 35.
- 220. Ameer, F.; Drewes, S. E.; Emslie, N. D.; Kaye, P. T.; Mann, R. L. J. Chem. Soc., Perkin Trans. 1 1983, 2293.
- 221. Mazdiyasni, H.; Konopacki, D. B.; Dickman, D. A.; Zydowsky, T. M. Tetrahedron Lett. 1993, **34**, 435.
- 222. Hubschwerlen, C.; Charnas, R.; Angehrn, P.; Furlenmeier, A.; Graser, T.; Montavon, M. J. Antibiot. 1992, 45, 1358.
- 223. Drewes, S. E.; Hoole, R. F. A. Synth. Commun. 1985, **15**, 1067.
- 224. Marson, C. M.; Pink, J. H.; Smith, C. Tetrahedron Lett. 1995, 36, 8107.
- 225. Brown, J. M.; James, A. P.; Prior, L. M. Tetrahedron Lett. 1987, **28**, 2179.
- 226. Charette, A. B.; Côté, B. Tetrahedron Lett. 1993, **34**, 6833; J. Am. Chem. Soc. 1995, **117**, 12721.
- 227. Rabe, J.; Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1983, **22**, 796.
- 228. Charette, A. B.; Côté, B.; Monroc, S.; Prescott, S. J. Org. Chem. 1995, 60, 6888.
- 229. Gruiec, A.; Foucaud, A.; Moinet, C. New J. Chem. 1991, 15, 943.

- 230. Colombani, D.; Chaumont, P. Macromol. Chem. Phys. 1995, 196, 3643.
- 231. Navarro, C.; Degueil-Castaing, M.; Colombani, D.; Maillard, B. Synth. Commun. 1993, **23**, 1025.
- 232. Reddy, K. C.; Byun, H. -S.; Bittman, R. Tetrahedron Lett. 1994, **35**, 2679.
- 233. Auvray, P.; Knochel, P.; Normant, J. F. Tetrahedron Lett. 1986, **27**, 5095.
- 234. Hoffmann, H. M. R.; Weichert, A.; Slawin, A. M. Z.; Williams, D. J. Tetrahedron 1990, **46**, 5591.
- 235. Byun, H.-S.; Reddy, K. C.; Bittman, R. Tetrahedron Lett. 1994, **35**, 1371; Bittman, R.; Byun, H.-S.; Reddy, K. C.; Samadder, P.; Arthur, G. J. Med. Chem. 1997, **40**, 1391.
- 236. Hoffmann, H. M. R.; Rabe, J. Helv. Chim. Acta 1984, 67, 413.
- 237. Ameer, F.; Drewes, S. E.; Kaye, P. T.; Loizou, G.; Malissar, D. G.; Roos, G. H. P. S. Afr. J. Chem. 1987, 40, 35.
- 238. Auvray, P.; Knochel, P.; Normant, J. F. Tetrahedron Lett. 1986, **27**, 5091.
- 239. El Alami, N.; Belaud, C.; Villierás, J. J. Organomet. Chem. 1987, **319**, 303.
- 240. Lambert, F.; Kirschleger, B.; Villierás, J. J. Organomet. Chem. 1991, 406, 71.
- Lambert, F.; Kirschleger, B.; Villierás, J. J. Organomet. Chem. 1991, 405, 273.
- 242. Okuda, Y.; Nakatsukasa, S.; Oshima, K.; Nozaki, H. Chem. Lett. 1985, 481.
- 243. Kovács, L. Recl. Trav. Chim. Pays-Bas 1993, 112, 471.
- 244. Talaga, P.; Schaeffer, M.; Benezra, C.; Stampf, J.-L. Synthesis 1990, 530.
- 245. Li, C. J.; Chan, T. H. Tetrahedron Lett. 1991, **32**, 7017.
- 246. Masuyama, Y.; Nimura, Y.; Kurusu, Y. Tetrahedron Lett. 1991, **32**, 225.
- 247. Yang, G.-M.; Su, G.-M.; Liu, R.-S. Organometallics 1992, **11**, 3444.
- 248. Colombani, D.; Maillard, B. J. Chem. Soc., Chem. Commun. 1994, 1259.
- 249. Eagen, M. C.; Cromwell, N. H. J. Org. Chem. 1974, 39, 3863.
- 250. Colombani, D.; Navarro, C.; Degueil-Castaing, M.; Maillard, B. Synth. Commun. 1991, **21**, 1481.
- 251. Düttmann, H.; Weyerstahl, P. Chem. Ber. 1979, **112**, 3480.
- 252. Hoffmann, H. M. R.; Eggert, U.; Poly, W. Angew. Chem., Int. Ed. Engl. 1987, **26**, 1015.
- 253. Basavaiah, D.; Pandiaraju, S.; Sarma, P. K. S. Tetrahedron Lett. 1994, **35**, 4227.

- 254. Grundke, C.; Hoffmann, H. M. R. Chem. Ber. 1987, **120**, 1461.
- 255. Ohno, M.; Azuma, T.; Satoshi, K.; Shirakawa, Y.; Eguchi, S. Tetrahedron 1996, **52**, 4983.
- 256. Weichert, A.; Hoffmann, H. M. R. J. Chem. Soc., Perkin Trans. 1 1990, 2154.
- 257. Adam, W.; Salgado, V. O. N.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Chem. Ber. 1993, **126**, 1481.
- 258. Saib, D.; Foucaud, A. J. Chem. Res. (S) 1987, 372.
- 259. Foucaud, A.; Brine, N. Synth. Commun. 1994, 24, 2851.
- 260. Mason, P. H.; Emslie, N. D. Tetrahedron 1994, 50, 12001.
- 261. Basavaiah, D.; Sarma, P. K. S. J. Chem. Soc., Chem. Commun. 1992, 955.
- 262. Bauchat, P.; Le Rouillé, E.; Foucaud, A. Bull. Soc. Chim. Fr. 1991, **128**, 267.
- 263. Beltaîef, I.; Amri, H. Synth. Commun. 1994, 24, 2003.
- 264. Amri, H.; Rambaud, M.; Villiéras, J. J. Organomet. Chem. 1990, 384, 1.
- 265. Drewes, S. E.; Slater-Kinghorn, B. J. Synth. Commun. 1986, 16, 603.
- 266. Basavaiah, D.; Sarma, P. K. S.; Bhavani, A. K. D. J. Chem. Soc., Chem. Commun. 1994, 1091.
- 267. Basavaiah, D.; Pandiaraju, S. Tetrahedron 1996, 52, 2261.
- 268. Vloon, W. J.; van den Bos, J. C.; Koomen, G.-J.; Pandit, U. K. Tetrahedron 1992, **48**, 8317.
- 269. Basavaiah, D.; Bhavani, A. K. D.; Pandiaraju, S.; Sarma, P. K. S. Synlett 1995, 243.
- 270. Calò, V.; Lopez, L.; Pesce, G. J. Organomet. Chem. 1988, 353, 405.
- 271. Yamamoto, K.; Deguchi, R.; Tsuji, J. Bull. Chem. Soc. Jpn. 1985, **58**, 3397.
- 272. Drewes, S. E.; Emslie, N. D.; Korodia, N.; Loizou, G. Synth. Commun. 1990, **20**, 1437.
- 273. Basavaiah, D.; Pandiaraju, S. Tetrahedron Lett. 1995, 36, 757.
- 274. Mason, P. H.; Emslie, N. D.; Drewes, S. E. Synth. Commun. 1995, **25**, 183.
- 274a Basavaiah, D.; Pandiaraju, S.; Krishnamacharyulu, M. Synlett 1996, . 747.
- 275. Janecki, T. Synth. Commun. 1993, 23, 641.
- 276. Kinoshita, Y.; Morita, K. Japan. Patent 71 05,134 (1971); Chem. Abstr. 1971, 75, 36959g; Morita, K.; Kinoshita, Y. Japan. Patent 70 36,485 (1970); Chem. Abstr. 1971, 74, 63949q.
- 277. Brown, J. M. Angew. Chem. Int. Ed. Engl. 1987, 26, 190.

- 278. Brown, J. M. Chem. Soc. Rev. 1993, 25.
- 279. Brown, M. J.; Cutting, I.; James, A. P. Bull. Soc. Chim. Fr. 1988, 211.
- Cheskis, B. A.; Moiseenkov, A. M.; Shpiro, N. A.; Stashina, G. A.; Zhulin,
 V. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1990, 807; Engl. transl. p. 716.
- 281. Brown, J. M.; Evans, P. L.; James, A. P. Org. Synth. 1990, 68, 64.
- 282. Brown, J. M.; Rose, M.; Knight, F. I.; Wienand, A. Recl. Trav. Chim. Pays-Bas 1995, **114**, 242.
- 283. Birtwistle, D. H.; Brown, J. M.; Herbert, R. H.; James, A. P.; Lee, K.-F.; Taylor, R. J. J. Chem. Soc., Chem. Commun. 1989, 194.
- 284. Brown, J. M.; Cutting, I. J. Chem. Soc., Chem. Commun. 1985, 578.
- 285. Harthun, A.; Barkemeyer, J.; Selke, R.; Bargon, J. Tetrahedron Lett. 1995, **36**, 7423.
- 286. Utaka, M.; Onue, S.; Takeda, A. Chem. Lett. 1987, 971.
- 287. Ben Ayed, T.; Amri, H.; El Gaied, M. M. Tetrahedron 1991, 47, 9621.
- 288. Lawrence, R. M.; Perlmutter, P. Chem. Lett. 1992, 305.
- 288a Amri, H.; Rambaud, M.; Villieras, J. J. Organomet. Chem. 1986, **308**, . C-27.
- 289. Akssira, M.; El Guemmout, F.; Bauchat, P.; Foucaud, A. Can. J. Chem. 1994, **72**, 1357.
- 290. Perlmutter, P.; Tabone, M. Tetrahedron Lett. 1988, 29, 949.
- 291. Amri, H.; El Gaied, M. M.; Ben Ayed, T.; Villieras, J. Tetrahedron Lett. 1992, **33**, 6159.
- 292. Ben Ayed, T.; Amri, H.; El Gaied, M. M.; Villiéras, J. Tetrahedron 1995, **51**, 9633.
- 293. Amri, H.; El Gaied, M. M.; Ben Ayed, T.; Villieras, J. Tetrahedron Lett. 1992, **33**, 7345.
- 294. Jungheim, L. N. Tetrahedron Lett. 1989, 30, 1889.
- 294a Ameer, F.; Drewes, S. E.; Hoole, R.; Kaye, P. T.; Pitchford, A. T. J. . Chem. Soc., Perkin Trans. 1 1985, 2713.
- 295. Markó, I. E.; Giles, P. R.; Janousek, Z.; Hindley, N. J.; Declercq, J.-P.; Tinant, B.; Feneau-Dupont, J.; Svendsen, J. Recl. Trav. Chim. Pays Bas 1995, **114**, 239.
- 296. Atkinson, R. S.; Fawcett, J.; Russell, D. R.; Williams, P. J. J. Chem. Soc., Chem. Commun. 1994, 2031.
- 297. Urabe, H.; Yamashita, K.; Suzuki, K.; Kobayashi, K.; Sato, F. J. Org. Chem. 1995, **60**, 3576.
- 298. Jenn, T.; Heissler, D. Synlett 1995, 607.
- 299. Giese, B.; Bulliard, M.; Zeitz, H.-G. Synlett 1991, 425.
- 300. Eastwood, F. W.; Mifsud, R. D.; Perlmutter, P. Aust. J. Chem. 1994, 47,

2187.

- 301. Heissler, D.; Jenn, T.; Nagano, H. Tetrahedron Lett. 1991, 32, 7587.
- 302. Giese, B.; Bulliard, M.; Dickhaut, J.; Halbach, R.; Hassler, C.; Hoffmann, U.; Hinzen, B.; Senn, M. Synlett 1995, 116.
- 303. Bulliard, M.; Zehnder, M.; Giese, B. Helv. Chim. Acta 1991, 74, 1600.
- 304. Bulliard, M.; Zeitz, H.-G.; Giese, B. Synlett 1991, 423.
- 305. Jenn, T.; Heissler, D. Tetrahedron Lett. 1992, 33, 7227.
- 306. Kündig, E. P.; Xu, L.-H.; Romanens, P. Tetrahedron Lett. 1995, **36**, 4047.
- 307. Kanemasa, S.; Kobayashi, S. Bull. Chem. Soc. Jpn. 1993, 66, 2685.
- 308. Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Raimondi, L. J. Org. Chem. 1995, **60**, 4697.
- 309. Daude, N.; Eggert, U.; Hoffmann, H. M. R. J. Chem. Soc., Chem. Commun. 1988, 206.
- 310. Colombani, D.; Chaumont, P. Progr. Polym. Sci. 1996, 21, 439.
- 311. Khoshdel, E.; van Kralingen, C. G. *Eur. Patent Appl.* EP 433,010 (1991); Chem. Abstr. 1991, **115**, 258730j; *U. S. Patent* 5,159,041 (1992).
- 312. Kress, A. O.; Mathias, L. J.; Cei, G. Macromolecules 1989, 22, 537.
- 313. Hall, A. W.; Lacey, D.; Hill, J. S.; Blackwood, K. M.; Jones, M.; McDonnell, D. G.; Sage, I. C. Liquid Crystals 1996, **20**, 437.
- 314. Khoshdel, E.; van Kralingen, C. G. *Eur. Patent Appl.* EP 435,505; Chem. Abstr. 1991, **115**, 258730j.
- 315. Katayama, S.; Harada, R.; Morita, K.; Nakanishi, R.; Izumi, Z. *Japan. Patent* 70 30,348 (1970); Chem. Abstr. 1971, **74**, 64664e.
- 316. Lacey, D.; Hall, A. W.; Hill, J. S.; McDonnell, D. G. *PCT Int. Appl.* WO 94 22,977 (1994); Chem. Abstr. 1994, **122**, 326664n.
- 317. Antonucci, J. M.; Stansbury, J. W.; Cheng, G.-W. U. S. Patent 5,380,901 (1995); Chem. Abstr. 1995, **123**, 33896h.
- 318. Scheuplein, S. W.; Kusche, A.; Brückner, R.; Harms, K. Chem. Ber. 1990, **123**, 917.
- 319. Paterson, I.; Bower, S.; Tillyer, R. D. Tetrahedron Lett. 1993, 34, 4393.
- 320. Brzezinski, L. J.; Levy, D. D.; Leahy, J. W. Tetrahedron Lett. 1994, **35**, 7601.
- 321. Maguire, R. J.; Mulzer, J.; Bats, J. W. J. Org. Chem. 1996, **61**, 6936; Tetrahedron Lett. 1996, **37**, 5487.
- 322. Yadav, J. S.; Ravishankar, R. Tetrahedron Lett. 1991, 32, 2629.
- 323. Jung, M. E.; D'Amico, D. C. J. Am. Chem. Soc. 1993, 115, 12208.
- 324. Seebach, D.; Imwinkelried, R.; Stucky, G. Helv. Chim. Acta 1987, **70**, 448.

- 325. Fabre, J.-L.; Julia, M.; Verpeaux, J.-N. Tetrahedron Lett. 1982, 23, 2469.
- 326. Fabre, J.-L.; Julia, M. Tetrahedron Lett. 1983, 24, 4311.
- 327. Onguchi, T.; Hakozaki, S. *Jpn. Kokai Tokkyo Kohu* 05 70,408 (1993); Chem. Abstr. 1993, **119**, 138760e.
- 328. Roos, G. H. P. Murdoch University, Murdoch, Australia, personal communication.
- 329. Roos, G. H. P. unpublished results cited in ref. 144 (ref. 7).
- 330. Wilhelm, D.; Blanc, A. *Eur. Patent Appl.* 306,410 (1989); Chem. Abstr. 1989, **111**, 174808v; *U. S. Patent* 5,081,276 (1992).
- 331. Janecki, T.; Bodalski, R. Synthesis 1990, 799.
- 332. Basavaiah, D. University of Hyderabad, India, personal communication.
- 333. Hoffmann, H. M. R.; Köver, A. unpublished results cited in Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 94, p. 103.
- 334. Drewes, S. E.; Emslie, N. D.; Khan, A. A.; Roos, G. H. P. Synth. Commun. 1989, **19**, 959.
- 335. Konno, M.; Yuasa, Y.; Harada, M.; Miura, T.; Kumobayashi, H. *Jpn. Kokai Tokkyo Koho* 06,172,300 (1994); Chem. Abstr. 1995, **122**, 55724g.
- 336. Crouch, R. D.; Nelson, T. D. J. Chem. Ed. 1995, 72, A6.

.

- 336a Bauchat, P.; Foucaud, A. Tetrahedron Lett. 1989 30, 6337.
- 337. Tsuboi, S.; Takatsuka, S.; Utaka, M. Chem. Lett. 1988, 2003.
- 338. Daude, N. Ph.D. Thesis, University of Hannover, Germany, 1990.
- 339. Tronchet, J. M. J.; Zerelli, S. J. Carbohydr. Chem. 1989, 8, 217.
- 340. Bailey, M.; Markó, I. E.; Ollis, W. D.; Rasmussen, P. R. Tetrahedron Lett. 1990, **31**, 4509.
- 341. Ollis, W. D. University of Birmingham, personal communication.
- 342. Basavaiah, D.; Gowriswari, V. V. L. Tetrahedron Lett. 1986, 27, 2031.
- 343. Iriuchijima, S.; Ino, T.; Ootsu, T. Jpn. Kokai Tokkyo Koho JP 05,306,256 1993); Chem. Abstr. 1994, **120**, 216724h.
- 344. Weichert, A. *Ph.D. Thesis*, University of Hannover, Germany, 1989, cited in ref. 43 (ref. 13).
- 345. Bethell, R.; Strunz, G. M. unpublished results cited in ref. 114, footnotes 2 and 3.
- 346. Perlmutter, P.; Teo, C. C. Tetrahedron Lett. 1984, 25, 5951.
- 347. Kitazume, S. *Japan Kokai* 77,105,115 (1977); Chem. Abstr. 1977, **88**, 89131f.
- 348. Nyman, F. *Brit. Patent* 1,100,350 (1968); Chem. Abstr. 1968, **69**, 10093w.
- 349. Amri, H.; Rambaud, M.; Villieras, J. Tetrahedron Lett. 1989, 30, 7381.
- 350. Rauhut, M. M.; Currier, H. *U.S. Patent* 3,074,999 (1963); Chem. Abstr. 1963, **58**, 11224a.
- 351. Baizer, M. M.; Anderson, J. D. J. Org. Chem. 1965, 30, 1357.
- 352. Basavaiah, D.; Gowriswari, V. V. L.; Bharathi, T. K. Tetrahedron Lett. 1987, **28**, 4591.
- 353. McClure, J. D. J. Org. Chem. 1970, 35, 3045.
- 354. Miyaji, H.; Kobayashi, T.; Morita, K. *Japan. Patent* 70 15,965 (1970); Chem. Abstr. 1970, **73**, 120091j.
- 355. Miyakoshi, T.; Omichi, H.; Saito, S. Nippon Kagaku Kaishi 1978, 473; Chem. Abstr. 1978, **89**, 23712k.
- 356. Kovalev, I. P.; Kolmogorov, Yu. N.; Ignatenko, A. V.; Vinogradov, M. G.; Nikishin, G. I. Izv. Akad. Nauk. SSSR, Ser. Khim. 1989, 1098; Engl. transl. p. 995.
- 357. Isaacs, N. S.; George, A. V. Polymer Commun. 1984, 25, 268.
- 358. Miyakoshi, T.; Saito, S. Nippon Kagaku Kaishi 1982, 703; Chem. Abstr. 1982, **97**, 5517m.

[4 + 3] Cycloaddition Reactions

James H. Rigby*, Wayne State University, Detroit, Michigan F. Christopher Pigge, Wayne State University, Detroit, Michigan

1. Introduction

Cycloaddition in its many manifestations represents one of the most powerful methods in organic chemistry for making cyclic structures. The high levels of convergency and stereoselectivity that frequently characterize these processes are particularly attractive from a preparative point of view. Five- and six-membered rings are typically made by the well-known 1,3-dipolar and Diels–Alder cycloaddition reactions, respectively, and so-called higher-order cycloaddition processes have emerged recently as useful methodology for the construction of medium-sized carbocycles. (1)

Seven-membered ring systems, owing primarily to their broad occurrence as substructures in many classes of natural products, are particularly important targets for synthesis, but there are relatively few ways currently available for *de novo* synthesis of these ring systems. As a general solution to this problem, [4 + 3] cycloaddition between a 1,3-diene and an allyl, or more frequently an oxyallyl, cation offers rapid access to functionalized seven-membered carbocycles with many of the attendant virtues of other cycloaddition processes. Considerable

effort has been expended recently to exploit the synthetic utility of these reactions, and several informative reviews of the subject are currently available. (2-7) Electronically, the process is quite similar to the Diels–Alder reaction and can be viewed as a [4 π (4C) + 2 π (3C)] combination in which the allyl cation participates as the reactive 2 π component. Much of the developmental work associated with [4 + 3] cycloaddition has focused on approaches to the generation of the allyl or oxyallyl cation reaction partner, and a number of useful methods have emerged. Typical examples are depicted in Eqs. 1, (8) 2, (9) and 3. (10)

While a wide range of 1,3-diene partners have been employed in these reactions, π -excessive heterocycles such as furan and pyrrole have been shown to be particularly useful participants and, recently, intramolecular versions of the [4 + 3] process have been effectively applied to natural product synthesis. (11)

This chapter reviews the literature of [4 + 3] cycloadditions that involve allyl and oxyallyl cations and closely related 2 π (3C) reactants to mid-1996. Those [4 + 3] cycloadditions previously compiled by Noyori and Hayakawa in their 1983 review of reductive dehalogenations of polyhaloketones (5) are also included in the current review so that all relevant examples are located in one document. Other 4 + 3 annulation processes that afford seven-membered carbocycles but that employ other types of reactive intermediates are not covered in this survey.

2. Mechanisms and Stereochemistry

The precise mechanistic characteristics of a given [4 + 3] cycloaddition reaction depend critically on a subtle interplay of several factors, including the nucleophilicity of the diene and the electrophilicity of the allyl cation, as well as the electronic properties of substituents located on the 2 π (3C) partner.

A common method for producing oxyallyl cation intermediates involves a two-electron reduction of an appropriate α , α '-dihaloketone that initially affords a metal enolate (Scheme I). Zinc(0) and iron(0) reagents are frequently employed for this purpose. This species can then undergo S_N1 -type ionization (possibly metal-assisted) to afford the corresponding oxyallyl-metal intermediate **3A**, which can, and frequently does, interconvert among the cyclopropanone and allene oxide structural isomers (Eq. 3a). Scheme 1.

The relative importance of these species is a function of several factors, and the parent cation (R = H) is thought to isomerize rapidly to the other two forms. (12, 13) In practice, most preparatively useful cations have one or more nonhydrogen substituents at the 1 and 3 positions, since the oxyallyl cation intermediate is known to be stabilized by the presence of electron-donating groups at these locations. Indeed, α , α '-dibromoacetone itself is not an acceptable participant in [4 + 3] cycloaddition because of the absence of appropriate substitution. Increasing the covalent character of the M - O bond also enhances the stability of species **3A**. For instance, employing Fe₂(CO)₉ as the reducing agent affords well-behaved allyl cations, owing in part to the highly covalent nature of the iron–oxygen bond. These species are among the most electrophilic 2 π (3C) reactants available and often give different reaction profiles than the more ionic (and less electrophilic) sodium-based cations.

In an effort to focus attention on the key issues controlling the course of [4 + 3] cycloadditions, Hoffmann has divided these reactions into two principal mechanistic categories, reflecting whether a particular reactant combination proceeds via a concerted bond-formation (A) or via a stepwise process (B) (Fig.

1). (4) A third category (C) is reserved for stepwise reactions in which subsequent ring formation is thwarted, and products of diene electrophilic substitution prevail. In those instances involving a stepwise process, the extent of cyclization (pathway B) relative to substitution (pathway C) is dependent to a large measure on the life-time of the allyl cation intermediate **5** (Eq. 3b). Examples of typical reactions in the class (B)/(C) manifold are presented in Eqs. 4 and 5. (14, 15) It is noteworthy that substantial amounts of substitution products are formed in these reactions.

On the other hand, some [4 + 3] cycloadditions involving oxyallyliron(II) cation intermediates, as well as others derived from reductive processes, appear to be concerted in nature, (16) and involve a symmetry-allowed $[4 \pi + 2 \pi]$ reaction. Interestingly, the metal center appears not to participate directly in the actual bond-forming event, an observation that is in contrast to most other known transition metal mediated cycloadditions. An informative example of this type of reaction can be seen in the combination of dibromoketone 11 with 3-methylfuran in the presence of Fe₂(CO)₉ (Eq. 6).

The rather indiscriminate regioselectivity exhibited by many of these [4 + 3] reactions is consistent with FMO control of the process. The HOMOs of various 3-substituted furans are known to be nearly symmetrical and do not vary significantly with changes in the electronic nature of the substituents. For example, 3-carboethoxyfuran affords a regiochemical mix similar to that found with 3-methylfuran in reaction with the oxyallyl species derived from **11**. In contrast, high syn-regioselectivity is observed with 2-carboethoxyfuran as the 4 π partner (Eq. 7). Secondary MO interactions between the phenyl group on the oxyallyl

iron reactant and the ester group on the furan have been invoked to explain this result. While a number of regioselective [4 + 3] cycloadditions are known, the extent of regioselection is normally less pronounced than in the Diels–Alder process.

It is noteworthy that high levels of regioselection are observed in cycloadditions between unsymmetrically substituted reactants under basic conditions, and frequently the more hindered adduct prevails. (17) This selectivity has been rationalized by invoking a nonsynchronous process where the less-substituted centers bond first (Eq. 7a).

The stereochemical course of [4 + 3] cycloaddition reactions is also a complex issue and is intimately associated with the position of the particular reaction on the mechanistic continuum. As a result these reactions, as a class, tend to be somewhat less stereoselective than Diels–Alder cycloadditions, although some examples are known to display impressive selectivity patterns. Furthermore, the phenomenological basis for stereoselection in these reactions is quite subtle and seems to depend to a larger extent on the conditions of a particular reaction than is typical for most pericyclic processes. Issues such as the electrophilicity of the allyl cation intermediate, reaction solvent polarity, and nucleophilicity of the diene partner all can have a profound influence on the steric course of [4 + 3] cycloadditions. Although the factors affecting the stereochemical course of these transformations can be subtle, several useful trends have been discerned that can allow reasonable predictions to be made in many instances.

Two topologically distinct transition states can be envisioned for the [4 + 3] cycloaddition reaction, an extended (chair-like) TS and a compact (boat-like) arrangement (Fig. 2). These designations correspond to the *exo* and *endo* orientations, respectively, in the Diels–Alder reaction. The steric analysis of these reactions, however, can become more complex than in the Diels–Alder reaction, since the configurational identity of the transient allyl cation intermediate may be unclear. For acyclic cations three possibilities can exist, the U form (16), the sickle form (17), and the W configuration (18). In many cases, the W form seems to prevail, at least as the initially formed reactive species. (4)

Several interesting studies reveal many of the salient stereochemical features of the [4 + 3] cycloaddition process. For example, the propensity for a reaction to follow an extended pathway has been linked to the electrophilicity of the intermediate oxyallyl cation. (8, 18) Exposing 2,4-dibromopentan-3-one to three different reducing conditions affords cycloadducts 19 (from a compact TS) and 20 (from an extended TS) in differing ratios (Eq. 8). Each of the reactions is assumed to

follow a concerted (A) pathway as evidenced by an absence of any configurational "leakage" during the course of the reaction. The putative sodium oxyallyl cation (weakly electrophilic) most strongly favors the compact reaction pathway, while the more electrophilic iron species begins to favor the extended transition state. Several rationales have been forwarded to explain this trend, including secondary orbital interactions and conformational control. (4, 7, 19-21)

In the presence of furan as the 4 π partner, the oxyallyl cation derived from 2,4-dibromopentan-3-one affords mixtures of products that arise from the compact and extended transition states as well as considerable quantities of a

third adduct exhibiting a trans relationship between the two methyl groups, indicating a loss of oxyallyl configurational integrity. This observation has been taken as evidence for a change to a Class B (stepwise) mechanism. Furthermore, a greater preference for the compact mode of cycloaddition is noted in this case relative to the previous study. In general, furan is known to favor the compact TS to a greater extent than does cyclopentadiene. (4) A typical preparative scale example is shown in Eq. 9. (22) The predominant stereoisomer is from the compact TS, and only a trace of the product possessing trans methyl groups is obtained.

The stereochemistry of cycloaddition employing cyclic oxyallyl cations has also been examined in some detail, although the chemical yields of products are frequently low. (23, 24) The reaction profile of the oxyallyl cation derived from 2,7-dibromocycloheptanone is typical. With furan, cyclic cations again prefer to react via the compact transition state to afford adduct **23**, while no selectivity is observed when cyclopentadiene serves as the 4 π partner (Eq. 10). In contrast, chloroenamine **24**, when treated with cyclopentadiene in the presence of AgBF₄, affords adduct **25** as a 93:7 mixture favoring the compact isomer (Eq. 11). (25)

In summary, although the sense and extent of stereoselectivity in [4 + 3] cycloadditions is somewhat variable relative to other cycloaddition reactions, careful choice of reactants and reaction conditions can lead to reasonably effective control of the steric course of these reactions.

3. Scope and Limitations

Rapid access to functionalized seven-membered carbocycles from readily available starting materials remains one of the principal synthetic virtues of [4 + 3] cycloaddition. Successful implementation of this methodology in a given situation, however, depends critically on the choice of oxyallyl cation precursor and on the conditions employed to produce this transient three-carbon species. Over the years numerous methods for producing allyl cations have been reported, and the reactivity characteristics of these species with diene partners span a range from highly organized, concerted processes to stepwise, dipolar reactions that frequently give rise to uncyclized products. The stereochemical features of these transformations are equally variable. However, judicious choice of reactants and reaction conditions can lead to the rapid production of useful seven-membered ring systems with good efficiency and predictable stereocontrol.

3.1. Reductive Conditions

Reduction of α , α' -dihaloketones has emerged as one of the principal methods for preparing oxyallyl cation intermediates for cycloaddition. (5) The character of the subsequent cycloaddition, however, is critically dependent on the specific reducing agent employed. Examination of the cycloaddition between furan and the oxyallyl cation derived from 2,4-dibromopentan-3-one under several conditions illustrates some of these issues (Eq. 12). (8, 22, 26)

As mentioned previously, furan tends to strongly favor a compact transition state during cycloaddition, and in most instances these reactions proceed in a concerted (Class A) fashion. (3) The Cu/Nal reduction conditions are known to provide one of the least electrophilic oxyallyl cation species because of the ionic nature of the Na–O bond. As a consequence, the product mixture obtained under these conditions is consistent with a concerted, compact

endo-selective reaction pathway. The zinc-based oxyallyl cation (from Zn/Cu) is of intermediate electrophilicity, and a small amount of stereochemical "leakage" is noted with the formation of *trans* adduct 26. Hoffmann has argued that loss of allyl cation configuration is a sufficient criterion for the intervention of a Class B (stepwise) mechanistic pathway. (4) Finally, the iron(II)-based allyl cation, known to be the most electrophilic metal-based cation, gives rise to a substantial quantity of adduct 26, further indicating the appearance of a stepwise process.

A striking example of the influence of cation electrophilicity on the course of a reaction can be seen with *N*-methylpyrrole serving as the diene partner (Eq. 13). (8, 9, 27) Only the least electrophilic 2π (3C) partner (from Cu/NaI) affords

[4 + 3] cycloadducts. Even a slightly more electrophilic species (from Zn/Cu) gives rise to regioisomeric mixtures of electrophilic substitution (Class C) products, and the strongly electrophilic oxyallyliron species gives only Class C products as well. *N*-Acyl and *N*-carboalkoxypyrroles however, afford [4 + 3] cycloadducts with both Zn–Cu couple and Fe₂(CO)₉-based oxyallyl cations, and these transformations have been exploited for tropane alkaloid synthesis. (8, 28)

It is noteworthy that the cycloaddition of oxyallyl zinc cations derived from Zn–Cu couples can be dramatically improved by performing the reaction in the presence of trimethylsilyl chloride. In an impressive example, the yield of adduct **30** improves from 22 to 93% using this technique (Eq. 14). (29, 30) The transformation presumably proceeds through a more electrophilic silyloxy cation intermediate.

A significant distinction that separates the Diels–Alder reaction from the [4 + 3] cycloaddition process is the relative paucity of viable examples of the later employing acyclic dienes as 4 π partners. This situation is normally ascribed to a strict requirement for the diene to exist principally or exclusively in the s-*cis* conformation for efficient [4 + 3] cycloaddition to occur. Although the Diels–Alder reaction also occurs via the diene s-*cis* conformation, the transient nature of the allyl cation intermediates exacerbates this requirement in [4 + 3] processes. Examples listed in Eqs. 15 and 16 dramatically illustrate the veracity

of this rationale. (8) While 1,3-butadiene itself affords the corresponding cycloadduct in only modest yield, the corresponding reaction with (η ⁴-butadiene) tricarbonyliron(0), wherein the diene is locked in an s-*cis* arrangement, affords the same product with much greater efficiency.

The reduction of polyhaloketones using Zn and $(EtO)_3B$ offers an interesting alternative means of preparing oxyallyl cations. (31) A notable feature of these conditions is their compatibility with minimally substituted α , α

'-dibromoketones such as **31** (Eq. 17). Indeed, it appears that at least one α -hydrogen must be

present in the dibromide substrate for reactions to occur under these conditions. The unexpected isolation of bromide **34** from this reaction provides some insight into the mechanism of oxyallyl cation production, which appears to involve initial formation of an enolborate intermediate. An appealing feature of this methodology is that it is suitable for large-scale reactions, as evidenced by the preparation of adduct **35** on a 1-mole scale using the two-step sequence shown in Eq. 18. (32)

$$Br \underbrace{\downarrow}_{Br \ Br}^{O} Hr + \underbrace{\downarrow}_{O}^{I} \underbrace{1. Zn, (EtO)_{3B}}_{54\%} \underbrace{\downarrow}_{35}^{O}$$
(18)

3.2. Solvolysis Conditions

Lewis-acid promoted cleavage of allyl halides is a particularly direct route into allyl cations. (33, 34) Cycloadditions involving simple allyl cation reactants can be problematic, however, and frequently require reaction conditions that are not amenable to scaleup (Eq. 19). (35) It is noteworthy that a closely related reaction with furan affords only products derived from Class C pathways.

The 2-methoxyallyl system has also been examined as a 2 π (3C) component

in [4 + 3] cycloaddition. (34) Carefully controlled conditions are necessary for the isolation of cyclic products from these reactions and the yields are frequently low (Eq. 20).

The closely related 2-silyloxyallyl cations have been explored with modest success in cycloaddition. The cation in these cases is prepared in situ by ZnX_2^- or AgX⁻ promoted heterolysis, and the presence of several terminal alkyl or aryl substituents is usually required for efficient ionization to occur in these substrates (Eq. 21). (36)

It is of interest to note that only a modest change in the conditions of the cycloaddition depicted in Eq. 21 results in improvement in the efficiency and regioselectivity of the reaction (Eq. 22). (19)

$$\begin{array}{c|c}
 & & \\ &$$

The choice of solvent frequently can have a profound effect on the course of the silyloxyallyl cation cycloaddition reactions. The results in Eq. 23 reveal the

effect of changing solvent from a THF/ Et_2O mixture to nitromethane. (19) It has been suggested that the reaction performed in nitromethane is concerted while the ether solvent mix favors a stepwise pathway.

3.3. Base-Mediated Conditions

Exposure of α -haloketones to various basic conditions is also a popular method for generating oxyallyl cations for use in [4 + 3] cycloadditions. Access to the halocarbon substrates is frequently more convenient and economical than to their dihalo counterparts. On the other hand, the requirement in some cases for stoichiometric quantities of a silver salt renders the overall process quite expensive. As a consequence, a number of less expensive and more convenient procedures have been developed. In a typical example of a silver-promoted reaction, a monobromoketone was treated with a stoichiometric quantity of silver tetrafluoroborate at room temperature. Subsequent addition of the diene partner and triethylamine afforded serviceable yields of cycloadducts (Eq. 24). (37, 38)

A number of related silver salt-mediated processes have also been employed successfully in cycloaddition reactions; however, effective ring formation has been recorded only for substrates with considerable substitution on the 1 and 3 positions of the allylic system. (39-41) Reactions mediated by Ag₂O are typical in this regard (Eq. 25). A less costly version of this process using LiClO₄/Et₃N to generate the

corresponding lithium oxyallyl intermediate has been developed, and in some instances a modest level of regiocontrol is observed with substituted furans. (42, 43)

From a large-scale preparative perspective, the observation that useful oxyallyl cations can be generated directly with base in appropriate solvents is particularly attractive. The choice of alcohol solvent is important for the success of these reactions, and 2,2,2-trifluoroethanol and 2,2,3,3-tetrafluoro-1-propanol have emerged as solvents of choice. (43-45) In many cases optimum yields of cycloadducts can be obtained by employing NaOCH₂CF₃ in CF₃CH₂OH, as illustrated in Eq. 26. A limitation to this method is the need to employ a large excess of the allyl cation trapping agent. (46, 47) This is, in fact, a drawback to most intermolecular oxyallyl cation-based [4 + 3] cycloadditions presented in this chapter.

Cyclic precursors have recently been the subject of considerable study as 2 π (3C) components in [4 + 3] cycloaddition. In many instances superior results

are obtained by employing basic conditions for the generation of the oxyallyl cation intermediates (Eq. 27). (43) It is noteworthy that considerably lower yields of adducts are realized using various reductive conditions in related processes. (48)

$$\bigcup^{O} Br + \bigcup_{O} \xrightarrow{Et_{3}N} \xrightarrow{O} (84\%)$$
(27)

3.4. Photochemical Conditions

Photochemical routes for generating oxyallyl cations represent an intriguing possibility for mild [4 + 3] cycloaddition. Interesting and informative examples are depicted in Eqs. 28 and 29.

Irradiation of dienone **38** in the presence of furan gives cycloadduct **39** exclusively as the compact (*endo*) adduct. (49) Pyrone photochemistry has also yielded a rich array of [4 + 3] cycloaddition opportunities. (50-52) The efficiencies of these reactions are quite variable, but in certain circumstances preparatively significant yields can be obtained as shown in Eq. 29. Once again good stereoselectivity appears to prevail in these transformations.

3.5. Intramolecular Cycloadditions

Recently, intramolecular [4 + 3] cycloadditions have been employed for the rapid buildup of molecular complexity in the construction of polycyclic systems. In some cases the allylic cation moiety is generated by an ionization process promoted by a Lewis acid. For example, hydroazulene systems can be

constructed in good yields via heterolysis of an allylic triflate at low temperatures (Eq. 30). (53) A

mixture of the *cis* and *trans* isomers was isolated from this process. Relatively efficient trapping of oxyallyl cations with a tethered furan moiety also affords functionalized hydroazulenes, primarily as single stereoisomers (Eq. 30a). (54) A

fascinating cycloaddition occurs between an oxyallyl cation generated within a 10-membered carbocycle and a tethered furan to yield a rare *trans*-bridged tetracyclic product (Eq. 31). (55) This result provides important insight into the configurational character of the oxyallyl cation intermediate involved in the reaction.

3.6. Applications to Synthesis

One of the principal virtues of [4 + 3] cycloaddition in which a heterocyclic diene participates as the 4 π reaction partner is the rapid construction of functionalized and conformationally rigid seven-membered carbocycles. Flexible cycloheptane ring systems are notorious for their conformational

ambiguities, and the production of rigid bicyclic intermediates via these cycloadditions permits stereoselective post-cycloaddition manipulations to be performed. This feature of these reactions has been exploited to good advantage in a number of natural product syntheses.

An obvious set of targets for these cycloadditions are the tropane alkaloids. Noyori and co-workers have reported an efficient synthesis of tropine using a cycloaddition between an oxyallyliron intermediate and *N*-carbomethoxypyrrole as the key entry into the characteristic azabicyclo [3.2.1]octane ring system (Eq. 32). (28) Related approaches have also been reported by Mann and co-workers. (27, 56)

A synthesis of racemic Prelog–Djerassi lactone (**41**) featuring a stereoselective [4 + 3] cycloaddition (via a compact TS) between a substituted furan and a zinc-based oxyallyl cation nicely illustrates how the rigid oxabicyclo[3.2.1]octane system produced in these reactions can be exploited for stereocontrolled post-cycloaddition manipulation (Eq. 33). (57)

A number of methods have been developed for ring-opening of the oxabicyclo [3.2.1]octane system that greatly expands the utility of [4 + 3] cycloaddition in stereoselective synthesis, allowing access to stereochemically elaborate cycloheptane rings (Eq. 34). (58-60)

The stereocontrolled preparation of nucleosides represents another example of how the stereochemical information contained in the oxabicyclo[3.2.1]octane ring system can be exploited to synthetic advantage. Routine [4 + 3] cycloaddition constructs a platform from which the ribofuranosyl skeleton can be elaborated employing straightforward chemistry (Eq. 35). (61)

4. Comparison with Other Methods

From a synthetic perspective the principal virtue of [4 + 3] cycloaddition is the ease with which seven-membered carbocycles can be assembled. In many cases the precursors are readily available and reasonable chemical yields are common. When cyclic diene partners are employed, conformationally rigid and facially biased products emerge, which are well suited for stereoselective post-cycloaddition manipulations. While there exists a multitude of methods for making six-membered ring systems, the synthetic repertoire remains relatively limited for the next higher homolog. A liability that many of these methods share is the lack of stereocontrol during the ring-forming event. Often this is an advantage of the [4 + 3] process. Classical methods for ring closure of functionalized acyclic precursors have had some success when applied to seven-membered rings, but stereocontrol can still be problematic.

The Dieckmann condensation (Eq. 36), (62) the Ruzicka cyclization (Eq. 37), (63) the Thorpe–Ziegler reaction (Eq. 38), (64) and acid-mediated olefin cyclizations (Eq. 39) (65) have all been successfully applied to seven-membered ring construction. In many cases fusion to a second ring enhances cyclization efficiency.

Ring expansion of readily available six-membered ring precursors has been used frequently for making seven-membered rings in natural product synthesis. An important feature of this strategy is the ability to exploit the stereocontrol afforded by the conformationally well behaved six-membered ring system as well as the stereoelectronic requirements of the ring-expansion process itself (Eq. 40). (66)

In spite of its successes for the preparation of other ring sizes, olefin metathesis chemistry has been applied to the synthesis of seven-membered rings only rarely (Eq. 41). Consequently, comparison with [4 + 3] cycloaddition is difficult at this time. (67)

Recently, intramolecular metal-promoted cycloaddition chemistry has been successfully applied to the synthesis of seven-membered rings (Eq. 42). (68) A related

metal-mediated rearrangement of a cyclopropyl–cyclobutenone substrate affords seven-membered rings in good yields (Eq. 43). (69)

Lewis acid-promoted annulations of 1,4-dicarbonyl compounds with bis-(trimethylsilyl)enol ethers has been developed as an efficient and versatile entry into seven-membered carbocycles that frequently exhibit an oxygen bridge. (70) As such, the products of this process are reminiscent of those formed in the [4 + 3] cycloaddition pathway and possess many of the same advantages that stem from the rigidity of the seven-membered ring (Eq. 44).

For certain applications, [4 + 3] cycloaddition holds significant advantages over many of these methods. For example, when Class A (concerted) reaction conditions are employed with a cyclic diene partner such as furan, the resultant high level of stereoselectivity is often difficult to match in other cycloheptannulation approaches.

5. Experimental Conditions

For haloketone cycloadditions involving reductive conditions, commercially available reducing agents are satisfactory in most cases, although some agents require preparation such as Zn/Cu and Zn/Ag couples. These are normally prepared under standard conditions from zinc metal and various copper or silver salts, respectively. (29) In several cases employing Zn/Cu as the reducing agent, enhanced reaction efficiency can be achieved by the addition of trimethylsilyl chloride to the reaction mixture. A mixture of copper and dry sodium iodide has also emerged as a convenient set of reducing conditions for [4 + 3] cycloadditions. (22) [Caution: Reactions involving Fe₂(CO)₉ and Fe(CO)₅ should be carried out in a well-ventilated hood since carbon monoxide gas may be produced during the reaction.]

Optimum conditions for effecting base-mediated cycloadditions of α -haloketones vary considerably. However, the best results are frequently obtained by employing fluorinated solvents such as CF₃CH₂OH or CF₂HCF₂CH₂OH in conjunction with triethylamine or alkoxide bases. Nonfluorinated alcohols of lower polarity are generally less effective solvents for cycloaddition. In certain cases, triethylamine in conjunction with an ethereal solution of LiClO₄ is effective as well.

6. Experimental Procedures

6.1.1. 2 α ,4 α -Dimethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (Reduction of an α , α '-Dihaloketone with Nal/Cu) (22)

A 1-L, three-necked, round-bottomed flask was fitted with a 100-mL dropping funnel having a nitrogen inlet tube, a magnetic stirrer, a thermometer, and an efficient double-surface condenser carrying a nitrogen outlet tube connected to a bubbler, and placed on a combined hot plate–magnetic stirring unit in a heat-resistant glass dish acting as a water bath. Dry acetonitrile (200 mL) was introduced into the flask, followed by 90 g (0.60 mol) of dried, powdered sodium iodide, with vigorous stirring under a slow stream of nitrogen. When the stirring bar rotated steadily, 20 g (0.31 g-atom) of powdered copper-bronze was added, followed by 28 g (30 mL, 0.41 mol) of freshly distilled furan. The dropping funnel was then charged with a solution of 24.4 g (0.100 mol) of 2,4-dibromopentan-3-one in 50 mL of dry acetonitrile, which was rapidly added to the stirred reaction mixture. The temperature rose to 45–50°, and a characteristic oatmeal-colored precipitate formed. After about 2 hours the temperature began to drop, and the reaction was maintained at 50–60° with the water bath for a total reaction time of 4 hours.

The flask was cooled to 0° with crushed ice, and 150 mL of dichloromethane was added with stirring. The reaction mixture was poured into a 2-L beaker containing 500 mL of water and 500 mL of crushed ice; material remaining in the flask was rinsed into the beaker with 10 mL of dichloromethane. The mixture was stirred thoroughly, further salts being precipitated, until the ice melted, and filtered into a cooled filter flask under reduced pressure through a sintered or Büchner funnel and a kieselguhr filter-aid cake. The beaker and filter cake were washed with 50 mL of dichloromethane, and the clear combined filtrates were transferred to a 2-L separatory funnel while still cold.

The mixture was shaken vigorously, the lower layer was separated and stored in ice, and the aqueous layer was extracted with two 50-mL portions of dichloromethane. The combined organic extracts were shaken with 100 mL of ice-cold, concentrated aqueous ammonia (35% w/w), filtered through a

filter-aid cake, and separated. The extraction and filtration were repeated with fresh ammonia solution using the same filter. The filter was washed with 50 mL of dichloromethane, and the organic layer was separated and dried over MgSO₄. The dried solution was filtered, the filter was washed with 50 mL of dichloromethane, and the solvent was removed on a rotary evaporator at 30°. The flask containing the residual oil was cooled to 0° before exposure to air.

The light-yellow oil was dissolved in 60 mL of 30% anhydrous diethyl ether in pentane and treated with 2 g of Na₂SO₄ and 0.5 g of decolorizing carbon. The mixture was swirled for a few minutes, allowed to settle, and filtered by gravity through three sheets of fine filter paper into a 100-mL round-bottomed flask with a 14/20 joint. The filter was washed with 10 mL of pentane, and the flask was sealed by wiring on a 14-mm serum cap. The flask was placed on a cork ring, lowered into an insulated container (large Dewar bottle, Styrofoam box, etc.) half filled with dry ice, and cooled slowly to -78° . When crystallization was complete, a nitrogen supply was connected to the flask *via* a syringe needle; the supernatant liquid was then withdrawn by syringe and replaced with 50 mL of pentane, previously cooled to -78° .

The flask was swirled, washing the crystals, and the pentane was withdrawn. The flask was connected to a vacuum (water pump) via the nitrogen inlet and warmed to room temperature. The crude cycloadduct (6.1–7.3 g, 40–48%) was isolated as colorless needles, mp 43.5–45°, from the first recrystallization. Pure 2 α , 4 α -dimethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one can be obtained by crystallization from pentane at –78° with minimal loss, mp 45–46°.

6.1.2. 8-Acetyl-2,2,4,4,-tetramethyl-8-azabicyclo[3.2.1]oct-6-en-3-one(Red uction of an α , α '-Dibromoketone with Diiron nonacarbonyl) (8, 5)

Into a 50-mL, two-necked flask equipped with a serum cap and a nitrogen balloon was placed 1.10 g (3.02 mmol) of diiron nonacarbonyl. After the system was flushed with nitrogen, 10 mL of dry benzene, 1.62 g (5.96 mmol) of 2,4-dibromo-2,4-dimethylpentan-3-one, and 218 mg (2.00 mmol) of *N*-acetylpyrrole, freshly distilled from sodium hydride, were successively added through the rubber septum by a syringe. The mixture was stirred at $40-50^{\circ}$ for 18.5 hours. The reaction mixture was diluted with 15 mL of ethyl acetate, washed with three 10-mL portions of saturated aqueous NaHCO₃ solution followed by 5 mL of brine, and dried over Na₂SO₄. Concentration of the organic layer gave 1.2 g of an orange oil, which was subjected to column chromatography (25 g of silica gel). Elution with 1:3 ethyl acetate-*n*-hexane followed by evaporation of the solvents gave some unreacted starting dibromoketone. The fractions eluted with ethyl acetate afforded 302 mg (68%) of the title compound as pale yellow crystals. Recrystallization from hexane gave an analytical sample: IR (CCI_4) cm⁻¹: 1720, 1660; ¹H NMR(CCI_4) δ : 1.02 (s, 6 H), 1.23 (s, 3 H), 1.30 (s, 3 H), 2.08 (s, 3 H), 4.32 (bs, 1 H), 4.92 (bs, 1 H), 6.42 (bs, 2 H).

6.1.3. 11,13-Dimethyl-12-oxo-9,10-dihydro-9,10-propanoanthracene(Redu ction with Zinc–Copper Couple in the Presence of Chlorotrimethylsilane) (29)

Anthracene (3 g, 16.9 mmol) was dissolved in benzene (30 mL) at 80°. Zinc dust (2 g, 32 mg-atom) and copper(I) chloride (0.32 g, 3.2 mmol) were added through a powder funnel, and the mixture was stirred for several minutes. Chlorotrimethylsilane (4.9 g, 36 mmol) was added, followed by 2,4-dibromopentan-3-one (7.45 g, 30 mmol) in benzene (5 mL). A second portion of zinc (2 g, 32 mg-atom) and copper(I) chloride (0.32 g, 3.2 mmol) was added and the mixture maintained at 80° for 4 hours. The hot reaction mixture was filtered to remove the Zn/Cu couple and the flask was rinsed with several portions of dichloromethane. On cooling, a solid mass precipitated and additional dichloromethane was added. The resulting solution was washed twice with saturated aqueous ammonium chloride solution, once with water, and once with saturated sodium chloride solution. The aqueous layers were washed with dichloromethane and the combined organic phase was dried over MgSO₄. The solvent was removed in vacuo and the crude product was chromatographed on silica gel (CH_2CI_2 as eluent). This afforded 4.1 g (93%) of product as a mixture of epimers: ¹H NMR(CDCI₃) δ 1.14 (d, J = 7 Hz, 6 H), 2.74 (d, q, J = 2.3, 7 Hz, 2 H), 3.80 (d, J = 7.3 Hz, 2 H), 7.22 (m, 8 H).

6.1.4. 8-Oxabicyclo[3.2.1]oct-6-en-3-one(Reduction of an α , α '-Haloketone Using the Zn/(EtO)₃B Method) (32)

A solution of 1,1,3,3-tetrabromopropanone (374 g, 1.0 mol) and triethyl borate (200 mL, 172 g, 1.2 mol) in dry THF (200 mL) was added during 1.5 hours to a mixture of zinc powder (68.6 g, 1.05 g-atom) and dry furan (136 g, 2.0 mol) in dry THF (200 mL) stirred under nitrogen and protected from light. The ensuing reaction heated the mixture to reflux, and the mixture was stirred overnight (19 hours) at room temperature. The mixture was then cooled to -15°, treated with water (200 mL), and stirred at 0° for 0.3 hour. Insoluble material was removed by filtration and washed with ether (500 mL), and the combined filtrates were diluted with water (800 mL). The heavy organic layer was separated, and the aqueous layer was extracted with ether (2 × 350 mL) which had first been used to wash further insoluble material. The combined organic layers were washed with saturated aqueous sodium chloride, dried, and concentrated at ca. 30°. The residue was treated with methanol (200 mL) and immediately added to a stirred and cooled (dry ice/acetone bath) mixture of powdered zinc-copper couple [from Zn, 230 g, 3.5 g-atom)] and ammonium chloride (250 g) in methanol (1 g/L) at a rate such that the internal temperature was maintained at 15–25°. The mixture was stirred overnight at room temperature under nitrogen and protected from light, and was then filtered. The solid was washed with dichloromethane (900 mL) and the combined filtrates were diluted with water (1.6 g/L), the organic layer was separated, and the aqueous layer was extracted with dichloromethane (300 mL + 4 × 150 mL). The combined organic layers were dried and the solvent was removed by distillation, initially at atmospheric pressure and then under reduced pressure; direct distillation (no condenser) in vacuo of the magnetically stirred residue (from a flask heated in a hot-water bath up to 100°) into a cooled (dry ice acetone) flask gave the ketone (67.1 g, 54%) (distillation temperature ca. 40-80° at 0.3 mmHg) as a white crystalline solid, mp 38–39° (lit., (34) 38°). The product was stored in the dark at -20° under argon.

6.1.5. 2,2,4-endo-Trichloro-8-oxabicyclo[3.2.1]oct-6-en-3-one (Base-Promoted Cycloaddition Between a Haloketone and a Diene) (71)

1,1,3,3-Tetrachloro-propan-2-one (1.96 g, 10 mmol) was added with stirring to a mixture of furan (10 mL), methanol (10 mL), and triethylamine (1.11 g, 11 mmol); stirring was continued at room temperature for 3 days. At this time, the yellow-brown solution was poured into water (100 mL) and extracted with diethyl ether (5 × 40 mL). The combined ether extracts were washed with saturated aqueous sodium chloride solution (40 mL) and dried over MgSO₄. The solvent was removed in vacuo and the solid residue was dissolved in a few mL of diethyl ether. Cooling (+5°) afforded colorless crystals (640 mg). Distillation of the mother liquor (Kugelrohr at 90–100°/0.002 Torr) gave a second crop. Total yield of product 1.232 g (54%) mp 88–89°, ¹H NMR(C₆D₆ δ 4.26 (dd, *J* = 4.6, 1.6 Hz, 1 H), 4.46 (d, *J* = 4.6 Hz, 1 H), 4.54 (d, *J* = 1.6 Hz, 1 H).

6.1.6. endo-2,endo-4- and exo-2,exo-4-Dimethylbicyclo[3.2.1]oct-6-en-3-one (Base-Mediated Cycloaddition Between a Monohaloketone and a Diene) (72)

To a mixture of 2-bromopentan-3-one (1.65 g, 10 mmol) and freshly distilled cyclopentadiene (10 mL) was added dropwise at room temperature a solution of sodium 2,2,3,3-tetrafluoropropoxide in 2,2,3,3-tetrafluoro-1-propanol (1 M, 10 mL). The resulting mixture was allowed to stir for 20 hours at which time diethyl ether (20 mL) was added and the mixture filtered. The solvent was removed in vacuo and the residue was distilled (Kugelrohr, 100–120° at 11 Torr) to afford 1.07 g (71%) of an oil consisting of an epimeric mixture of cycloadducts.

6.1.7. 2,2-Dimethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one(Silver Salt-Promoted Cycloaddition Between a Silyloxyallyl Chloride and a Diene) (19)

To a well-stirred mixture of silver perchlorate (2.25 g, 10 mmol), calcium carbonate (2 g), and furan (1.7 g, 25 mmol) in nitromethane (20 mL) at 0° was added a solution of 1,1-dimethyl-2-(trimethylsilyloxy)allyl chloride (1 g, 5.2 mmol) in nitromethane (5 mL) over a period of 15 minutes. The resulting mixture was stirred for 15 minutes at 0° and then diluted with ether (40 mL). Sodium chloride solution was added until the inorganic materials aggregated. The organic layer was separated, washed with Na₂CO₃ solution, dried, and the solvent removed in vacuo to afford crude product. The product was isolated by chromatography on alumina to yield 727 mg (92%) of product as colorless crystals: mp 46–47°.

CAUTION: Silver perchlorate is a fire and explosion hazard. It should be kept away from open flames and from sources of heat or sparks; contact with combustible materials can cause fires. Silver perchlorate forms solvent complexes with many common solvents, including benzene, pyridine, and ethanol. These complexes, as well as silver perchlorate itself, can explode when subjected to impact or friction.

6.1.8. (±)-(3a α ,6 α ,7 β ,9a

β)-2,3,6,7,8,9-Hexahydro-3a,b-epoxy-7,9a-methano-1H-cyclopentacycloo cten-10-one (Intramolecular Cycloaddition) (55)

To a solution of diisopropylamine (290 mg, 2.85 mmol) in freshly distilled THF (6.55 mL) was added n-BuLi (1.04 mL of a 2.5 M solution) at -78°. After stirring for 15 minutes at this temperature, 2-[3-(2-furanyl)propyl]cyclopentanone (500 mg, 2.6 mmol) in THF (6.5 mL) was added dropwise via syringe with stirring over a 10-minute period. The reaction mixture was then stirred for an additional 30 minutes, at which time trifluoromethanesulfonyl chloride (526 mg, 3.1 mmol) was added. The reaction mixture was stirred for 5-10 minutes and then removed from the cold bath and quenched with water. The reaction mixture was diluted with ether (12 mL) and worked up. The crude chloroketone was dissolved in freshly distilled ether (26 mL). Anhydrous LiClO₄ (8.3 g, 78 mmol) and freshly distilled triethylamine (790 mg, 7.8 mmol) were added. The mixture was allowed to stir at room temperature for 12-48 hours. Column chromatography (silica gel, 12% ethyl acetate/hexanes) of the crude reaction mixture gave the cycloadduct as a mixture favoring the endo isomer in 53% yield. Recrystallization (hexanes)

gave the major isomer: mp 83°, ¹H NMR(CDCl₃) δ 6.28 (bd, *J* = 5.7 Hz, 1 H), 6.09 (d, *J* = 5.8 Hz, 1 H), 4.69 (dd, *J* = 1.5, 3.4 Hz, 1 H), 2.41 (dd, *J* = 4.0, 5.6 Hz, 1 H), 2.17–2.12 (m, 1 H), 2.08–1.99 (m, 3 H), 1.94–1.69 (m, 4 H), 1.5–1.4 (m, 2 H). [**CAUTION:** Lithium perchlorate should be handled with the same precautions as silver perchlorate (see above).]

7. Tabular Survey

[4 + 3] Cycloaddition reactions are grouped in Tables I–VI according to the reaction conditions employed to generate the allyl cation reaction partner and follow the order of topics discussed in the Scope and Limitations section [Table I (Reductive Conditions); Table II (Solvolysis Conditions); Table III (Base Conditions); Table IV (Photochemical); Table V (Intramolecular); and Table VI (Miscellaneous Examples)]. Tables I–III are further divided into subcategories related to the types of 4 π reaction partners involved. Table I (Reductive Conditions) includes all of the entries surveyed in Noyori and Hayakawa's *Organic Reactions* chapter on "Reductive Dehalogenations" (1983, Vol. 29, pp. 163–344) as well as all subsequent examples published until mid-1996. Miscellaneous reaction conditions, such as metal-promoted cycloadditions, that could not be placed in Tables I–V are collected in Table VI.

Within each table, the reactions are listed according to increasing carbon number in the oxyallyl cation precursor, and the count is based on the total number of carbon atoms in these reactants that also appear in the final product. For example, spectator ligands around a metal center or carbons in a leaving group are not included in the count.

Yields are given in parentheses, and a dash indicates that no yields or experimental conditions were provided in the original reference.

The following abbreviations are used in the tables:

Ac	acetyl
C_3H_5	cyclopropyl
Et ₂ O	diethyl ether
DME	1,2-dimethoxyethane
THF	tetrahydrofuran
TBDMS	tert-butyldimethylsilyl

Table I. [4 + 3] Cycloaddition of Haloketones (Reductive Conditions) A.With Open-Chain 1,3-Dienes

View PDF

Table I. [4 + 3] Cycloaddition of Haloketones (Reductive Conditions) B.With Carbocyclic Dienes

View PDF

Table I. [4 + 3] Cycloaddition of Haloketones (Reductive Conditions) C.With Pyrrole Derivatives

View PDF

Table I. [4 + 3] Cycloaddition of Haloketones (Reductive Conditions) D.With Furan Derivatives

View PDF

Table I. [4 + p3] Cycloaddition of Haloketones (Reductive Conditions) E.With Anthracene

View PDF

Table II. [4 + 3] Cycloaddition of Allyl Cations (Solvolytic Conditions) A.With Open-Chain 1,3-Dienes

View PDF

Table II. [4 + 3] Cycloaddition of Allyl Cations (Solvolytic Conditions) B.With Carbocyclic Dienes

View PDF

Table II. [4 + 3] Cycloaddition of Allyl Cations (Solvolytic Conditions) C.With Pyrrole Derivatives

View PDF

Table II. [4 + 3] Cycloaddition of Allyl Cations (Solvolytic Conditions) D.With Furan Derivatives

View PDF

Table III. [4 + 3] Cycloaddition of Haloketones (Base Conditions) A. WithOpen-Chain 1,3-Dienes

View PDF

 Table III. [4 + 3] Cycloaddition of Haloketones (Base Conditions) B. With

 Carbocyclic Dienes

View PDF
Table III. [4 + 3] Cycloaddition of Haloketones (Base Conditions) C. With Pyrrole Derivatives

View PDF

Table III. [4 + 3] Cycloaddition of Haloketones (Base Conditions) D. With Furan Derivatives

View PDF

Table IV. Photoinitiated [4 + 3] Cycloadditions A. With Carbocyclic Dienes

View PDF

Table IV. Photoinitiated [4 + 3] Cycloadditions B. With Furan

View PDF

Table V. Intramolecular [4 + 3] Cycloadditions

View PDF

Table VI. Miscellaneous [4 + 3] Cycloadditions

View PDF

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS)

· · · · · · · · · · · · · · · · · · ·				
Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	\downarrow		$\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ c \\ \end{array} \\ B \\ B$	+
<u></u>	Zn/Cu Zn/Cu Hg, NaI $Fe_2(CO)_9$ $Fe_2(CO)_9$ $Fe_2(CO)_9$ $Fe_2(CO)_9$ $Fe_2(CO)_9$	C_6H_6 , isopentane or DME MeCN, DME, 10°, 24 h MeCN C_6H_6 , 57°, 10 h C_6H_6 , 57°, 20 h C_6H_6 , 60 to 80°, 12 h C_6H_6 , reflux, 4.5 h	A/B/C (23 : 54: 23) (12) $A/B/C (48 : 43 : 9) (5)$ () $A/B/C (26 : 46 : 30) ()$ $A/B/C (22 : 43 : 30) ()$ $A/B/C (11 : 28 : 61) ()$ $A/B/C (: 1 : 3.6) ()$ O	78.77 78 73 78 78 78 78 78 78
Br Br	$ \begin{array}{c} & R^{2} \\ \hline R^{2} \\ \hline Fe_{2}(CO)_{9} & \frac{R^{1}}{H} & \frac{R^{2}}{H} \\ H & Me \\ Me & Me \\ \hline CeCl_{3}\text{-}SnCl_{2} & Me & Me \\ \hline Fe_{2}(CO)_{9} & CH_{2}CH(COMe)(CH_{2})_{2} \\ CH_{2}C(CO_{2}Et)_{2}OCH_{2} \end{array} $	C ₆ H ₆ , 60°, 38 h C ₆ H ₆ , 65°, 38 h C ₆ H ₆ , 60°, 38 h THF, 0° C ₆ H ₆ , 65° C ₆ H ₆ , 65°	$ \begin{array}{c} $	8,73 8,73 8,73 74 79 79
	$ \begin{array}{c} Fe(CO)_{3} \\ R^{1} \\ R^{2} \\ \hline R^{1} \\ H \\ H \\ H \\ Me \\ Me \end{array} $	С ₆ Н ₆ , 80°, 4 h С ₆ Н ₆ , 87°, 12 h С ₆ Н ₆ , 80°, 12 h	(90) (70) (100)	8,73 8,73 8
O Br Br	$Fe_2(CO)_{9},$ R^1 R^2 R^2		i -Pr \downarrow Pr - i R^1 R^2	
	$ \frac{X}{H} = \frac{X}{H} $ $ \frac{H}{H} = \frac{H}{Me} $ $ \frac{Fe(CO)_3}{M} $	C ₆ H ₆ , 90°, 12 h hv, C ₆ H ₆ , 25°, 36 h C ₆ H ₆ , 60°, 38 h	(44) (31) (36)	8,73 8,73 8
	$R^{1} R^{2}$ $\frac{R^{1}}{H} R^{2}$ $H H$ Me Me	C ₆ H ₆ , 70°, 40 h C ₆ H ₆ , 120°, 20 h	(77) (55)	8,73 8,73

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued)

	Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₃	$Br \xrightarrow{O}_{Br} Br$	Zn, cyclopentadiene, (EtO) ₃ B	THF. 15 h	$Br \underbrace{O}_{A} Br \underbrace{O}_{(12)} + Br \underbrace{O}_{B} Br \underbrace{O}_{(25)} + Br \underbrace{O}_{(25)}$	31
		1. Fe(CO)5, cyclopentadiene 2. Zn/Cu, NH4Cl	THF/C ₆ H ₆ , 80°. 30-40 min MeOH, 15 min	C (60. 47)	8,80,81
C4		$\frac{1}{1.2} \int Fe(CO)_3$ 2. Zn/Cu, NH ₄ Cl	Ether, 14 h MeOH, 18 h	C (60, 47)	82
C ₅	Br Br	Zn, cyclopentadiene, (EtO) ₃ B	THF, 15 h	(6)	31
v	O Br Br	Cyclopentadiene			
		Cu, NaI Cu, NaI Zn/Cu Fe2(CO)9 CeCl3-SnCl2	MeCN, 4.5 h MeCN, 50°, 2 h DME, -10° C ₆ H ₆ , 60°, 25 h THF, 0°	A/B (6.4 : 1) (91) A/B (6.4 : 1) (82) A/B (1.67 : 1) () A/B (47 : 53) (86) A/B (72 : 73) (88)	18 83 26,84 8,73 74
		Zn/CuCl. TMSCl Zn/Cu, TMSCl Fe2(CO)9	dioxane, sonication, 3 h dioxane, 20°, 24 h C ₆ H ₆ , 40-90°, 12-80 h	(90) (65) (81)	85 85 85
		Cu, Nal, EtO OEt	MeCN, 20°, 18 h	O OEt (11)	18
		\mathbf{R}^{1} \mathbf{R}^{2}		R^{1} R^{2} R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{2	
		Cu, NaI R ¹ R ² Me Me H OAc Zn/Cu Me Me Me Me Mc <i>t</i> -Bu Me Ph	MeCN, 20°, 24.5 h MeCN, 20°, 18 h DME, –15°, 2 h 	$K^{T} C$ $A/B (4.6 : 1) (80)$ $A/C (5.2 : 1) (70, 33)$ $A/B/C (12.2 : 10 : 1) ()$ $A/C (ca. 5 : 1) (60)$ $A/B/C (20 : 1 : 1) (60)$ $A/B/C (5 : 1 : trace) (60)$	18 18 18 86 86 86
		Fe ₂ (CO) ₉ , 1,3-cyclohexadiene	C ₆ H ₆ , 30°, 24 h	(52) + (34)	87

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued)

B. With Carbocyclic Dienes

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	Cyclopentadiene		I I	
X = Br	Zn, (EtO) ₃ B	THF, overnight	(55)	31 26.84
	CeCl ₃ -SnCl ₂	THF, 0° to rt	(71)	20,84 74
V I	Zn-Cu	dioxane, sonication	(81)	85
X = 1	Zn, (EtO) ₃ B	THF, overnight	(78)	31
\mathcal{A}_{O}^{Br}	 Fe₂(CO)₉, cyclopentadiene Zn/Cu, NH₄Cl 	1. THF, C ₆ H ₆ , 80°, 70 min 2. MeOH, 20 min	1 (83, 66)	88,8
Br -Br	Fe ₂ (CO)9, cyclopentadiene	-	$ \begin{array}{c} & & & \\ & $	89
$\bigvee_{0}^{\mathbf{Br}}$	Cyclopentadiene			
	Zn, (EtO)3B Zn/Cu	THF, overnight DME, -5 to 0°	A/B (2.2 : 1) (78) A/B (3.8 : 1) (60)	31 26,84
C_7 Br Br				
°	Zn/Cu, cyclopentadiene	DME, -5° to rt	(65)	26, 84
	$Fe_2(CO)_9$	C_6H_6 , 60°, 38 h dioxane 5° 12 h	(82, 71) (55)	8, 73 30
	CeCl ₃ -SnCl ₂	THF, 0°	(70)	74
	Zn/Cu	dioxane, sonication	(88)	85
	OMe , Fe ₂ (CO) ₉	_	(56)	90
	, Fe ₂ (CO) ₉	C ₆ H ₆ . 60°. 36 h		20
	$ \begin{array}{c} Fe_2(CO)_9, O \\ R \\ Ph \\ Ph \\ Ph \\ Ph \end{array} $		Ph Ph Ph	
	<u>R</u> Me	C ₆ H ₆ , 50°, 35 h	(35)	91
	Et	C_6H_6 , 60°, 16 h	(29)	91 91
	n-Pr n-Bu	С ₆ п ₆ , 50 [°] , 34 h С ₆ H ₆ , 60°, 32 h	(20)	91
	Ph		(0)	91

B. With Carbocyclic Dienes (Continued)

B. With Carbocyclic Dienes (Continued)									
Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.					
	, Zn/CuCl, TMSCl	DME, 0° to rt	(3)	92					
	, zn/cuci, TMSCI	DME, 0° to rt		92					
Br	, NaJ/Cu	MeCN, п, 6 h	· · · · · · · · · · · · · · · · · · ·	93					
PhSO ₂ O SO ₂ Ph	, Fe ₂ (CO) ₉ , TiCl ₄	CH ₂ Cl ₂ , 0°	(32)	94					
Br Br Br	, Zn/Cu	Dioxane, sonication	(84)	85					
Br Br	, Nal, Cu	МсСЛ, п, 6 h		93					
$C_9 \qquad \qquad$	Fe2(CO)9, cyclopentadiene	$C_6H_6, 90^\circ, 12$ h	$\begin{array}{c} & & \\$	8, 73					
Br Pr- <i>i</i> Br	Nal/Cu	MeCN, rt, 6 h	$H - \frac{O}{C} - Pr - i = I (30)$	93					
	\sum , Zn/(EtO) ₃ B	THF, 5 h	I (5)	93					
Br, Br	, Nal/Cu	MeCN, п, 6 h	$H_{-} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $ (41)	93					
C_{12}	, Zn/Cu	Dioxane, sonication	(71)	85					
Br Br	, Nal/Cu	MeCN, π, 6 h	H- (13)	93					

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued)

	Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₃		, Zn/Cu	Dioxane, sonication	0 I (71)	85
		, Zn/Cu	Dioxane, rt	I (26)	85
C ₁₅	$Ph \underbrace{\downarrow}_{Br} Ph$	NaI, cyclopentadiene	MeCN, reflux, 15 min	$Ph \xrightarrow{O} Ph (40) + Ph \xrightarrow{O} Ph (60)$	96
		NaI/Cu	Acetone	No reaction	97
		Nal,	Acetone	Ph + Ph (total 90) O Ph O Ph	86
		, x		Ph H Ph Ph Ph Ph Ph Ph Ph Ph	20, 21
				A B H Ph Ph Ph Ph C Ph + D Ph + D Ph	
				Ph O Ph E	
		<u>_X</u>		A B C D E	
		NaI, Cu NaI	MeCN, acetone, rt, 5 h MeCN, acetone,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		Zn-Cu	reflux, i h Glyme, rt, 15 h	- 0.5 1.7 2.1 1.7	
		Fe ₂ (CO) ₉	THF, rt, 6 h	- 2.5 0.3 22.6 10.3	
		Fe ₂ (CO) ₉	C ₆ H ₆ , rt, 6 h	— 0.3 6 9 2.3	

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued) B. With Carbocyclic Dienes (Continued)

	Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₃	$Br \rightarrow Br Br Br$	N I CO2Me		$Br = CO_2Me$	
		Zn/Cu Fe ₂ (CO) ₉	DME, -5°, 2.5 h C ₆ H ₆ , 50°, 72 h	A (30) A/B (2 : 1) (70, 52) O	28 28, 98
		1. Zn/Cu 2. Zn/Cu, NH₄Cl	 DME, -5 to 10°, 1 h 25°, 2 h MeOH, 5 min 	$E = CO_2Me$	28
		1. Fe₂(CO)9 2. Zn/Cu, NH₄Cl	C ₆ H ₆ , 50°, 72 h MeOH, 3 h	I (57)	28
C₅	O Br Br			$R^{2} + R^{2} + R^{2} + R^{2} + R^{2} + R^{3} + R^{3$	·
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MeCN, 3-4 h MeCN, 3-4 h MeCN, 8 h MeCN, 20°, 4 h MeCN, 3-4 h MeCN, 3-4 h MeCN, 3-4 h MeCN, 3-4 h C ₆ H ₆ , 40°, 70 h	R^3 R^3 R^4 C D A + B (65) A:B = 6:1 A (89) B (52) A () A (66) A (50) A (74) α -D (60) α -D (48), β-D (60)	9 9 27, 99 18 9 9 9 27, 99 8, 100, 101
C.		Fe2(CO)9 Et H H	<i>h</i> v, C ₆ H ₆ , 10 h MeCN	R ¹ = CO ₂ Me, A + B + C (60); A:B:C = 42:29:29 <i>t</i> -BuN A + t (60) A:B = 1:24	8
C ₀	O Br Br	, Cu, NaI Me	MeCN, 3-4 h	0 Me (70)	9
	n-Pr Br Br	Cu, Nal	MeCN	$Me r^{r} (57)$	27, 99
	O Br Br	N, Fe ₂ (CO) ₉ Me	C ₆ H ₆ , 40°, 18 h	$(31) \qquad \qquad$	8, 101

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued)

C. With Pyrrole Derivatives

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	C ₆ H ₆ , 40 - 50°, 18.5 h	$ \begin{array}{c} O \\ Ac \\ N \\ N \end{array} $ (68)	8, 100
Ca	Zn/CuCl, ultrasound	Dioxane	<i>t</i> -BuN O (43)	102
Br Fr I	R R R		H^{*} H^{*	5
cis-I	K Cu, Nal Me Cu, Nal TMS Fe2(CO)9 Et Fe2(CO)9 CO2CH2CCl3 Fe2(CO)9 CO2Bu-t Fe2(CO)9 CO2Bn	MeCN, C_6H_6 , 50°, 48 h MeCN, C_6H_6 , 24 h C_6H_6 , 50°, 48 h C_6H_6 , 64°, 2 h C_6H_6 , 64°, 2 h C_6H_6 , 50°, 21 h C_6H_6 , 91°, 2 h	α -B (34) α -B, R = H (); β -B, R = H () A, R = CO ₂ Me (77) A (58), α -B (19) A (5); α -B, R = H (2) A (58); α -B (14)	
trans-I	Cu, Nal Me	MeCN, C ₆ H ₆ , 50°, 48 h	α-Β (5)	

 TABLE I. [4+3]
 CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued)

 C. With Pyrrole Derivatives (Continued)

Haloketone		Reactants			Reactants Conditions		Conditions	Product(s) and Yield(s) (%)	Refs.
C_3 O Br Br Br Br						Br. Br. Br. Br. Br.			
						A B			
	Zn, (EtO) ₃ B				THF, 15 h	A (30)	31, 27, 99,		
							103, 104, 32		
	Zn/Ag				1. THF, -10°, 2 h	A (65)	105, 106		
					2. 25°, 12 h				
	Fe ₂ (CO) ₉				Reflux, 48 h	A + B (63), $A:B = 9:1$	8, 81, 107, 107a		
	Zn, Ag,	OAc			1. THF, -10°, 10 min 2. 20°, 12 h	Br OAc (52)	5		
	R^2 R^1 O R^3	R ¹	R ²	R ³		R^1 R^3 R^2			
	1. Zn/Ag	Н	Н	Н	1. THF, -10°, 2 h	(55)	105		
	•				2. 25°, 12 h				
	2. Zn/Cu, NH4Cl				MeOH, 15 min				
	1. Zn/Ag	н	OBn	н	1. THF, 0°, 1 h	(14)	108		
					2. 20°, 48 h				
	2. Zn/Cu, NH4Cl				MeOH, 25°, 1 h				
	1. Zn/Ag	Н	OTHP	н	1. THF, 0°, 1 h	(31)	5, 109		
					2. 20°, 60 h				
	2. Zn/Cu, NH4Cl				MeOH, 20°, 2 h				

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued) D. With Furan Derivatives

Haloketone		React	ants		Conditions	Product(s) an	d Yield(s) (%)	Refs.
				,				
		<u>R'</u>		<u>R''</u>		(25)		~
	I. Zn/Ag	н	OBn	н	1. THF, -10°, 1 h	(35)		5
	2 Zp/Cu NH Cl				2. 50°, 49 ft 3. MaOH 0° 2 h			
	2. Zil/Cu, NH ₄ Cl				4 25° 1 h			
	1. Zn/Ag	н	OAc	н	THF. 20°. 12 h	(46)		110
	2 Zn/Cu NH ₄ Cl		0.10	••	MeOH 20°.1 h	(10)		
	1. Zn/Ag	н	Me	н	THF. 20°	(60)		111
	2. Zn/Cu, NH₄Cl				MeOH, 20°			
	1. Zn/Ag	н	Me	Н	THF, 20°, 14 h	(86)		112
	2. Zn/Cu, NH4Cl				MeOH, 20°, 1 h			
	1. Zn/Ag	Me	Н	Me	THF, 20°, 12 h	(66)		113, 114
	2. Zn/Cu, NH4Cl				1. MeOH, 0°, 2 h			
					2. 20°, 1 h			
	1. Zn/Ag	н	Bu-t	Н	1. THF, 0°, 2 h	(23)		5, 108
					2. 20°, 6 h			
	2. Zn/Cu, NH ₄ Cl				MeOH, 20°, 1 h			
	1. Zn/Ag	н	C ₅ H ₁₁ -n	н	1. THF, 0°, 1 h	(20)		5, 108
					2. 30°, 48 h			
	2. Zn/Cu, NH ₄ Cl				MeOH, 15°, 2 h			
	1. Zn/Ag	Н	Н	C ₅ H ₁₁ -n	1. THF, -10°, 1 h	(50)		5
					2. 25°, 12 h			
	2. Zn/Cu , NH_4Cl			D	MeOH, 1 h	((2))		E
	I. Zn/Ag	н	н	Ph	1. THF, -10 to 25°, 1 h	(62)		5
	2 7-ICH NULCI				2. 25°, 40 n			
	2. Zn/Cu, NH4Cl	11	DL		MeOn, 2 II	(22)		5
	I. ZIVAg	п	FII	п	2 20° 48 h	(22)		5
	2 Zp/Cu NH ₄ Cl				MeOH 2 h			
	2.2.2.00,							
		R ¹	R ²	R ³				
	1. Zn/Ag	Me	н	Me	1. THF, -10°, 30 min	(66)		5
					2. 20°, 48 h			
	2. Zn/Cu, NH ₄ Cl				MeOH, 2 h			
	1. Zn/Ag	C₅H	(₁₁ -n H	C ₅ H ₁₁ -n	1. THF, –10°, 1 h	(41)		5, 113
					2. 20°, 24 h			
	2. Zn/Cu, NH ₄ Cl	DI		DI.	MeOH, 0°, 4 h	(53)		£
	1. Zn/Ag	Ph	н	Pn	1. 1HF, -10°, 10 min	(53)		3
	2 Za/Cu NH Cl				2. 20°, 12 h			
	$2.20Cu, NH_4Cl$	u	ц	ц	Deflux 48 h	(63)		8
	2 7n/Cu NH.Cl	11	11	11	MeOH 15 min	(05)		0
	1 Fea(CO)a	н	н	Br	C/H/ 60° 3 b	(44)		5
	2. Zn/Cu. NH4Cl			ы	MeOH. 15 min			5
	1. Fe ₂ (CO) ₉	н	н	Me	C ₆ H ₆ , 60°, 5 h	(70)		111, 107
	2. Zn/Cu, NH₄Cl				MeOH, 25°, 1 h			
	1. Fe ₂ (CO) ₉	н	Н	Pr-i	C ₆ H ₆ , 60°, 2 h	(47)		115, 81
	2. Zn/Cu, NH₄Cl				MeOH, 30 h			
	1. Fe ₂ (CO) ₉	н	Pr-i	н	C ₆ H ₆ , 60°, 2.5 h	(71)		115, 116
	2. Zn/Cu, NH4Cl				MeOH, 20 min			
	1. Fe ₂ (CO) ₉	н	Н	C ₅ H ₁₁ -n	C ₆ H ₆ , 60°, 5 h	(67)		5, 111
	2. Zn/Cu, NH4Cl				MeOH, 25°, 1 h			
	1. Fe ₂ (CO) ₉	н	Н	Ph	C ₆ H ₆ , 60°, 5 h	(63)		117
	2. Zn/Cu, NH ₄ Cl				MeOH, 25°, 1 h			
						0		
	$Fe_2(CO)_0$, $R^1 = R^2$	² = H.			C ₆ H ₆ , 65°. 2 d	OEt	(30)	118
	$R^3 = CH(OEt)_2$	- ••				(O) OEt	(20)	
						Ĭ o~		
	$Fe_2(CO)_9, R^1 = R^2$	² = H,			C_6H_6 , 65°, 2 d	Lollo'	(15)	118
	$R^3 = CHOCH_2C$	H ₂ O				\searrow		

$TABLE \ I. \ [4+3] \ CYCLOADDITION \ OF \ HALOKETONES \ (REDUCTIVE \ CONDITIONS) \ (Continued)$

D. With Furan Derivatives (Continued)

Haloketone		Reactar	nts		Conditions	Product(s) and Yield(s) (%)	Refs.
			·			0	
						L C	
	$Fe_2(CO)_9, R^1 = R$	$k^2 = H,$			C ₆ H ₆ , 65°, 2 d	$\int 0 \int 0$ (16)	119
	$\mathbf{R}^{3} = \mathbf{C}(\mathbf{M}\mathbf{e})\mathbf{O}\mathbf{C}$	H ₂ CH ₂ O					
						0	
		SnBu ₂	Zn-Ag		THF, rt. 22 h	(13)	119
		51	8			SnBu ₃	
C.							
Ϋ́ΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥ	$\langle \rangle$					+	
Br Br	`0´						
						A B	
X = Y = H	Zn, (EtO)3B				THF, 15 h	X = Y = H, A/B (total 10)	31
X, Y = H, Br	Zn, (EtO) ₃ B				THF, 15 h	X = Y = H, A/B (total 9)	31
						X = H, Y = Br (23), A and/or B,	
X = Y = Br	7n/Ag				1 THE -10° 25h	X = Br, Y = H(14) A and/or B, $X = Y = Br(61)$	105 61
A - I - DI	Linne				2. 25°, 17 h	A and of D, X = T = DT(0T)	120
	1. Zn/Ag				1. THF, -10°, 2.5 h	A, $X = Y = H$ (53)	105
					2. 25°, 17 h		
	2. Zn/Cu, NH	₄Cl			MeOH, 1 h		
	1. Fe ₂ (CO) ₉				24 h	X = Y = H, A/B (55 : 45) (63)	8
C	2. Zn/Cu, NH	₄Cl			MeOH, 15 min		
0							
→ Br	, Zn/Cu				_	Et (30)	27, 99
Br Br	0						
						0 0	
0 	R^2 R^2						
$\downarrow \downarrow \downarrow$						R^{1} I R^{3} R^{1} I R^{3} R^{1} R^{3}	+
Br Br	\mathbf{R}^{1} O \mathbf{R}^{3}					$\rightarrow \rightarrow$	
						\mathbf{R}^2 \mathbf{R}^2 \mathbf{R}^2 \mathbf{R}^2	
						а в	
						· . Ŭ .▲	
						R^1 R^3	
						\leq	
						\mathbf{R}^2 \mathbf{R}^2	
		R ¹	R ²	R ³		C	
	Cu, NaI	н	н	Н	MeCN, 45 to 60°, 4 h	A (48)	22, 27, 99,
							121-123
	Cu, Nal	н	н	Н	MeCN	A + B + C (); A:B:C = 91:3:6	18
	Zn/Cu	н	н	H	-	A + B + C (70)	27, 99
	Zn/Cu	н	н	н 	DME, -10°, 1.5 h	A + B + C (85); $A:B:C = 81:10:9$	26, 57, 124
	Zn/Cu Zn/Cu	н u	н ц	H U	DME	A + B + C (); A:B:C = 74:9:7 A + B + C (); A:B:C = 75:10:15	18
	Zn/Cu.	н	н	H	DME	A + B + C (); A:B:C = 79:8:13	18
	<i>n</i> -BuNClO ₄						
	CeCl ₃ , SnCl ₂	н	н	н	THF	A + B + C (90); A:B:C = 62:28:10	74
	ZnCu, LiClO ₄	н	н	Н	DME	A + B + C (); A:B:C = 92:4:4	18
	CeCl ₃ , SnCl ₂	н	н	Me	THF, 0° to rt	A + B (90); A:B = 70:30	74
	Zn/Cu	H	н	C(Me	$O(CH_2)_2O$ DME, 0 to 25°, 16	h A (53)	57
	Zn/Cu Zn/Ag	н н	Me H	н н	DME 1 THE -10° 1 b	A + B + C (); A:B:C = 45:34:21 A (80)	18
	LIVITE	**			2. 25°, 12 h	(00)	
	Fe ₂ (CO) ₉	н	н	н	C ₆ H ₆ , 40°, 53 h	A + C (90); A:C = 44:56	8
	Fe ₂ (CO) ₉	Me	н	Me	C ₆ H ₆ , 80°, 16 h	A (78) A $+$ B (01): A B (2:27)	8, 114, 125
	Ceci3, Shci2	wie	п	wie	INF, U IUII	A = D(21), A = 03.37	

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued) D. With Furan Derivatives (Continued)

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	0=O , Cu/KI	MeCN, 60°		126
	, Cu/Nal	MeCN	A = B A + B (50). A:B = 3:2	127
	Ph O . Cu/NaI Ph	MeCN	Ph Ph (81)	102
	$R^1 \longrightarrow R^2$, Zn/Ag	THF, -10°	R^1 C^0 R^2	119
	K K H $(CH_2)_3OTHP$ Me $(CH_2)_3SnBu_3$ H $CH_2N(CO_2Me)CH_2SnBu_3$ H $CH_2OCH_2SnBu_3$ H $CH_2SCH_2SnBu_3$ H $CH_2SCH_2SnBu_3$ H $(CH_2)_4SnBu_3$		(35) () (55) (22) (24) (43)	
\downarrow	$\left< \bigcirc \right>$			
X = H X = Br	Zn/Cu Zn/Ag	Acetone 1. THF, -10°, 1.5 h 2. 25°, 16 h	X = H (20) X = Br (55)	26 105, 61, 120
	 I. Zn/Ag Zn/Cu, NH4Cl 	1. THF, –10°, 1.5 h 2. 25°, 19 h MeOH, 1 h	X = H (50)	105
	 Fe₂(CO)₉ Zn/Cu, NH₄Cl CeCl₃-SnCl₂ 	Reflux, 40 h MeOH, 15 min THF, 0° to rt	X = H (93) X = H (78)	8 74
<i>i</i> -Pr Br Br Br	 Fe₂(CO)₉, furan Zn/Cu, NH₄Cl 	Reflux, 16 h MeOH, 1.5 h	<i>i</i> -Pr ₁₂ (35)	8, 81
<i>i</i> -Pr Br Br Br Br	, Zn-Ag	THF	i-Pr _v (7)	128
	, Zn-Ag	THF	i-Pr _n (7)	128
	, Zn-Cu	Acetone, -5° to rt	$A \qquad B \qquad (<5)$	26

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued) D. With Furan Derivatives (Continued)

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	$\langle O \rangle$, Fe ₂ (CO) ₉	40°, 45 h	A and/or B (84)	8
	Ph O, Zn/CuCl Ph	Ultrasound	Ph Ph O (50)	102
Br Br	$\langle \rangle_{O}$, Fe ₂ (CO) ₉	Reflux, 30 h	H (35)	8, 101
	, Cu, Nal	MeCN, rt, 6 h	I (9)	93
C_7 O H Br Br				
	Zn/Cu $Fe_2(CO)_9$ $Fe_2(CO)_9$ $2e^-$, $n-Bu_4NBF_4$ $Fe(CO)_5$, TiCl ₄ Me_2CuLi Fe-graphite $CeCl_3$, SnCl ₂ Zn/Cu	Acetone, -5° to rt 40°, 38 h C ₆ H ₆ , 40°, 38 h MeCN, 14° CH ₂ Cl ₂ , 0° Et ₂ O, -78° , 0.5 h 40°, 15 h THF, 0° to rt dioxane, sonication	(43) (96) (89) (—) (77) (6) (88) (77) (91)	26 8 129 94 130 131 74 85
	, Fe ₂ (CO) ₉ , TiCl ₄	CH ₂ Cl ₂ , 0°		94
	, Fe ₂ (CO) ₉ , TiCl ₄	CH ₂ Cl ₂ , 0°		94
	, Zn/Cu	Ultrasound, dioxane		127
OP(O)(OEt) ₂	, Me ₂ CuLi	Et ₂ O, -78°		130
i-Pr Br Br	, Cu, NaI	MeCN, rt	i-Pr. O i -Pr. O i -Pr. O B B A B B B A B B B B A B B B A B B B B A B	128
	, Cu, NaI	MeCN, rt	A + B (60), A:B = 3:1 i- Pr (73)	128, 132

 \leq

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued) D. With Furan Derivatives (Continued)

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
		MeCN, rt	i-Pr.	128
	MeO ₂ C	MeCN, rt	A B A + B (52), A:B = 1:1 $i \cdot PT_{x}$ $i \cdot CO_{2}Me$ MeO ₂ C A B A + B (35), A:B = 1:1	128
	MeO ₂ C, , Cu, NaI	MeCN, rt	i-Pr (42) MeO ₂ C	128
	OMEM , Cu, Nai	MeCN, rt	i-Pr. (55 OMEM	128
Br Br	, Zn, Cul, TMSCl	1. THF, 0°, 3 h, 2. rt, 3 h	(42)	133. 134
Br Br	, Fe ₂ (CO)9	Reflux, 62 h	(54) (21)	8, 101
Br	, Cu, Nai	MeCN, rt, 6 h	H (25)	93
	$\langle $, Zn, B(OEt) ₃	MeCN, rt, 6 h	I (15)	93
n-C ₅ H ₁₁ Br Br Br	I. Zn/Ag, 2. Zn/Cu, NH₄Cl	1. THF, -10°, 2 h 2. 25°, 39 h MeOH	$C_{5}H_{11}-n (47)$	5, 61, 120
	, Zn/Cu	Dioxane, sonication		85
Br O Br	$\left\langle \bigcup_{O}\right\rangle$, Fe ₂ (CO) ₉	Reflux, 48 h	$A (27) \qquad B (10)$	8, 101
	Zn/Cu	С ₆ Н ₆ , п	A () + B ()	135

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued) D. With Furan Derivatives (Continued)

	Haloketone		F	Reactants			Conditions	Product(s) and Yield(s) (%)	Refs.
	Br Br	() , c	u, NaI				MeCN, rt, 6 h		93
C₀	i-Pr Br Br	(), F	e ₂ (CO)9					A + B + B + B + B + B + B + B + B + B +	
							40°, 80 h C ₆ H ₆ , 40°, 80 h DMF, 22 h	A/B (77:23) (96) A/B (75:25) (89) A (20)	8 8 136
	Ph Br		R ³ R ⁴					$\begin{array}{c} R^{1} \\ Ph \\ O \\ R^{2} \\ A \\ R^{3} \\ R^{3} \\ B \\ R^{2} \end{array} + \begin{array}{c} R^{4} \\ Ph \\ O \\ R^{3} \\ R^{1} $	
								$\begin{array}{c} \begin{array}{c} Ph \\ R^{1} \\ O \\ R^{2} \\ C \\ R^{3} \end{array} \begin{array}{c} Ph \\ Ph \\ R^{4} \\ O \\ R^{3} \\ D \\ R^{2} \end{array}$	<u>1</u>
		7.10	R ¹	R ²	R ³	<u>R</u> ⁴	DMC 100	$\begin{array}{c c} A+B & A:B & C+D & C:D \\ \hline $	5
		Zn/Cu Zn/Cu	н н	Me CO ₂ Et	н Н	н Н	DME, -10° DME, -10°	(30) 65:55 (18) 64:50 (41) 67:33 ()	5
		Zn/Cu	CO ₂ Et	н	н	н	DME, -10°	(40) 88:12 (—) —	5
		Zn/Cu	CO ₂ Mc	Мс	н	н	DME, -10°	(20) 95:5 ()	5
			R	R ²	R ³	R ⁴		A + B A:B C + D C:D	
		Zn/Cu	CO ₂ Me	н	н	Me	DME, -10°	(23) 79:21 — —	5
		Zn/Cu	CO ₂ Me	н	Me	н	DME, -10°	(20) 80:20	5
		Zh/Ag	п	п	п	п	2. 25°, 19	(77) 100:0	5
		Fe2(CO)9	н	Br	н	н	C ₆ H ₆ , 30°	(44) 65:35 (29) 66:34	16
		Fe ₂ (CO) ₉	Н	Ме	н	н	C ₆ H ₆ , 30°	(29) 56:44 (19) 56:44	16
		Fe ₂ (CO) ₉	Н	CO ₂ Me	н	н	C ₆ H ₆ , 30°	(52) 55:45	16
		Fe ₂ (CO) ₉	CO ₂ Me	Н	н	н	C ₆ H ₆ , 30°	(56) 90:10	16
		$Fe_2(CO)_9$	CO ₂ Me	Me	н	Н	C ₆ H ₆ , 30°	(63) 92:8 — —	16
		$Fe_2(CO)_9$ $Fe_2(CO)_9$	CO ₂ Me CO ₂ Me	H H	H Me	ме Н	C ₆ H ₆ , 30° C ₆ H ₆ , 30°	(85) 76:24	16
	$Ph \underbrace{\downarrow}_{Br Br Br} Br$	1. O 2. Zn/Cu, M	, Zn/Ag NH₄Cl				1. THF, -10°, 2 h 2. 25°, 12 h McOH, 1 h	O Ph (48)	61, 120
~	Br O Br	(), c	u, NaI				MeCN, 15 h	o (13)	133
C ₁₀	Br i-Pr	().c	u, NaI				MeCN, rt, 6 h	i-Pr- H	93
	Br Pr-i Br	(), C	u, NaI				MeCN, rt, 6 h	H, Pr- <i>i</i> I (22)	93
		(), zı	n, (EtO)3B	i			THF, 5 h	I (35)	93

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued) D. With Furan Derivatives (Continued)

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
Br Br	, Zn/Cu	C ₆ H ₆ , rt		135
Br Br	, Zn/Cu	_		
Br Br	, Zn/Cu		H = H = H = H = H = H = H = H = H = H =	137, 135
	, Fe ₂ (CO) ₉	Reflux, 40 h	A (7) + C (45) + (34)	8, 101
Br Br	, Zn/Cu	_	$H \rightarrow O + O + O + O + O + O + O + O + O + O$	137, 135
Ph Ph Ph Br Br Br			$\begin{array}{c} 0 \\ H \\$	B
	Cu, Nal Zn/Cu Hg Fe ₂ (CO)9 Fe ₂ (CO)9 Me ₂ CuLi Nal Nal	MeCN, 80° MeCN, reflux, 2 days 	A and/or B (80) A (29) + PhCH ₂ COCHPh ₂ (49) A (35) A (45) + B (45) A + B (1 : 1) (90) A and/or B (20) A (65) A (30) + B (10) + Ph (45)	27, 99 96 96 8 138, 139 140 97 96

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued) D. With Furan Derivatives (Continued)

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
$Br \rightarrow Br \\ Br & Br \\ Br &$	Anthracene, Zn/Cu	Dioxane, 80°		141
	Anthracene, Zn/Cu, TMSCl	Dioxane, 80°, 2 h	Br 0 Br 1 (15)	142
	Anthracene, Zn/Cu, ultrasound	Dioxane, 8 h	I (28) Br	142
	Anthracene, Zn/Cu, <i>N,O</i> -bis(TMS)acetamide, ultrasound	C ₆ H ₆	Br O Br (42)	142
	, Zn/Cu	Dioxane, ultrasound	Br Br R	
	K Me OMe CH=CH2 CH2CH=CH2 (CH2)2CH=CH2		(71) (64) (71) (67) (70)	141 141 141, 143 141, 143 141
O Br Br			A + B = B	
	Zn, CuCl Zn, CuCl, TMSCl Zn-Cu, ultrasound Zn-Cu, <i>N,O</i> -bis(TMS)acetamide	Dioxane, 80-85°, 5 h C_6H_6 Dioxane	A/B (ca. 90 : 10) (22) A/B (ca. 1 : 1) (93) A/B (76 : 24) (29) A/B (82 : 18) (44)	29, 29a 29, 29a 142 142
	OMe , Zn-Cu N,O-bis(TMS)acetamide	C ₆ H ₆	OMe (24)	142
	Ph , Zn-Cu N, O-bis(TMS)acetamide	C ₆ H ₆	(30)	142
	R Zn-Cu	Dioxane, ultrasound		141
	R Br CH ₂ CH=CH ₂ OTMS		(40) (65) (37)	

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued)

E. With Anthracene

	Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	O Br Br	Anthracene, Zn, CuCl	Dioxane, 80-85°, 5 h	0 I (12)	29. 29a
C ₆		Anthracene, Zn, CuCl, TMSCl	C ₆ H ₆	I (76)	29, 29a
		Anthracene, Zn, CuCl	Dioxane, 80-85°, 5 h	0 1 (25)	29, 29a
		Anthracene, Zn, CuCl, TMSCl	C ₆ H ₆	I (97)	29, 29a
	PhSO ₂	Anthracene, Fe(CO) ₅ , TiCl ₄	$CH_2Cl_2, 0^\circ$	I (12)	94
C ₇	$\bigcup_{\mathbf{Br} \mathbf{Br}}^{\mathbf{O}}$	Anthracene, Zn, CuCl	Dioxane, 80-85°, 5 h	I (3)	29, 29a
		Anthracene, Zn, CuCl,	C ₆ H ₆	I (71)	29, 29a
		$R \\ R \\ R$	C₅H₅	R R R	
		Zn-Cu, TMSCI R OMe Zn-Cu H, OTMS	Dioxane, ultrasound	(40) (30) (26)	29a 29a 141
	PhO ₂ S SO ₂ Ph	Anthracene, Fe(CO)5, TiCl4	CH ₂ Cl ₂ , 0°	(86)	94

TABLE I. [4+3] CYCLOADDITION OF HALOKETONES (REDUCTIVE CONDITIONS) (Continued) E. With Anthracene (Continued)

	Cation Precursor	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₃	тмзо	, SnCl4	CH ₂ Cl ₂ , -78°, 0.6 h	ОН (32)	144
C₁		, AgO ₂ CCF ₃	Isopentane, -78°, 6 h	(6)	145
		, AgO ₂ CCF ₃	Isopentane, -78°, 1 h	+ (total 47)	145
		, AgO ₂ CCF ₃	Isopentane, -78°, 1 h	(4)	145
	Отмя	, TiCl4	CH ₂ Cl ₂ , -78°, 1 h	<u>О</u> ОН ()	146
C5		, AgO ₂ CCF ₃	MeNO ₂ , -15°	CI (10)	19
		, ZnCl ₂	CH ₂ Cl ₂ , -78°, 2 h	(26)	36
		, ZnCl ₂	CH ₂ Cl ₂ , -78°, 50 min	(18)	36
		, ZnCl ₂	CH ₂ Cl ₂ , -78°, 2 h	(60)	36
		, AgClO ₄ , CaCO ₃	Et ₂ O, THF, 0°, 45 min		147
		, AgClO ₄	MeNO ₂ , 0°	I (58)	19
		, AgClO4	THF, Et_2O , 0°	I (65)	19
		, AgClO ₄ , Al ₂ O ₃	C ₆ H ₆ , rt	1 (71)	19
		, ZnCl ₂	MeNO ₂ , 0°, 1.5 h		19
		, ZnCl ₂	THF, Et ₂ O, 0°, 1.5 h	/ N I (10)	19

TABLE II. [4+3] CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) A. With Open-Chain 1,3-Dienes

Cation Precursor	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	. AgBF4	CH ₂ Cl ₂ , - 6 0°	(27)	25
С ₁₄	, AgBF4	CH ₂ Cl ₂ , -60°	(30)	25
S N=N	NC F ₃ C CN	Cyclohexane, 50°, 7.5 h	(86)	148

 TABLE II. [4+3] CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continued)

 A. With Open-Chain 1,3-Dienes (Continued)

	Cation Precursor	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
C3	∬ I	, AgO ₂ CCF ₃	Isopentane, –78°, 6 h	(6)	145
	MeO	, AgO ₂ CCF ₃ , Na ₂ CO ₃	C ₆ H ₆ , isopentane, rt, 30 h	O (17)	34
	тмѕо, сно	, SnCl4	CH2Cl2, -78°, 5 h	$(72) \alpha: \beta = 73: 27$	144
	HC≡C−∕ Br	, AgO ₂ CCF ₃	Pentane, 0°	(13)	149, 150
C₄	MeO	, AgO ₂ CCF _{3,} Na ₂ CO ₃	C ₆ H ₆ , isopentane, rt, 30 h	O (1)	34
	Υ_ı	, AgO ₂ CCF ₃ , Na ₂ CO ₃	SO₂, −50°, 1.5 h	I (40) + II (16)	35, 151
		, AgO ₂ CCF ₃ , Na ₂ CO ₃	C ₆ H ₆ , 0°, 1 h	I (42) + II (18)	151
		, AgO ₂ CCF ₃ , Na ₂ CO ₃	Isopentane, -78°, 6 h	I (50) + II (20)	145

TABLE II. [4+3] CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continued) B. With Carbocyclic Dienes

Cation Precursor	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	, TMSOTf	CH ₂ Cl ₂ , -78°, 3 h	O o o o o o o o o o o o o o	152
TMSO	, TMSOTf	CH ₂ Cl ₂ , -50°, 3 h	О (47)	153
TMSO CI	, AgClO4	MeNO ₂ , 0°	(53) + (23)	19
MeO Br	, AgO ₂ CCCl _{3.} Na ₂ CO ₃	Isopentane, rt, 25 h	(20)	14, 154, 155
	, AgO ₂ CCCl _{3.} Na ₂ CO ₃	Isopentane, rt, 25 h	(0.5)	154
	, AgO ₂ CCCl _{3.} Na ₂ CO ₃	Isopentane, rt, 25 h		154
Ύ'ι	, AgO ₂ CCCl ₃ Na ₂ CO ₃	SO ₂ , -50°, 1.5 h	I (20)	35
TMSO	Na ₂ CO ₃	nopolitalio, 70,01		143
	() // , AgClO ₄ CaCO ₃	Et ₂ O, THF, 0°, 45 min	I (91)	147, 19
TMSO	, ZnCl ₂	CH ₂ Cl ₂ , -78°, 2 h	I (54)	36
	, AgClO4	MeNO ₂ , 0°, 1 h		19
	, AgClO ₄	Et ₂ O, THF, 0°, 1 h	1 (8)	19
TMSO Cl	, AgClO ₄	MeNO ₂ , 0°, 1 h	^{vu} Cl (64)	19
отмя	, SnCl4	CH ₂ Cl ₂ , -78°, 0.5 h	О СНО (76)	153
HC=C-	AgO ₂ CCF ₃	Pentane	O (18) + (19)	150. 149

TABLE II. [4+3] CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continued) B. With Carbocyclic Dienes (Continued)

_	Cation Precursor	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
C6	TMSO O ₂ CCF ₃	, ZnCl ₂	CH ₂ Cl ₂ , DIEA reflux, 7 h	(total 95)	156
·	TMSO CI	, AgClO ₄	THF. Et ₂ O. 0°, 1 h	(71)	19
	TMS O ₂ CCF ₃	, ZnCl ₂	MeCN, DIEA, 0°	(45)	15
		, AICI3	PhMe, -78 to 0°, 12 h	0 (70)	157
	MeC=C-Cl	, ZnCl ₂	CH ₂ Cl ₂ , -40°, 1 h	Cl I (36)	158, 149
	$MeC = C - O_2CCF_3$, ZnCl ₂	CH ₂ Cl ₂ , DIEA, rt	I (42)	156
	$MeC = C - \bigvee_{O_2CCF_3}$, ZnBr ₂	CH ₂ Cl ₂ , DIEA, π	Br (39)	156
C ₇	ОН		TsOH, pentane, 0° to rt	I + II total (37)	159
	ОН		TsOH, pentane, 0° to rt	I + II (—)	159
			TsOH, pentane, 0° to rt	I + II ()	159
	THPO	, TiCl4	PhNHMe, CH ₂ Cl ₂ , -20°	(44)	92
		AgClO ₄	MeNO ₂ , 0°, 1 h	0 Bu- <i>t</i> (60)	19
	TMS 02CCF3	(), ZnCl ₂	MeCN, DIEA, 0°	···· (60)	15
	EtO O2CR	\mathcal{D} , ZnCl ₂	MeCN, DIEA, rt	$\begin{array}{c} OEt \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ CF_3 \\ \hline \\ \\ CF_3 \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	156
	∕_c=c∠ _{CI}	, ZnCl ₂	CH2Cl2, -40°, 1 h	(28)	158, 149

TABLE II. [4+3] CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continued) B. With Carbocyclic Dienes (Continued)

3 Du <i>r</i>	, ZnCl ₂	CH2Cl2, DIEA, reflux	OEt (96)	156
TMSO r ^{ar}	AgClO ₄	MeNO ₂ , 0°, 1 h	""" Bu-1 (60)	19
TMS OH	TiCl ₄	PhNHMe, CH ₂ Cl ₂ , -20°	(38)	30
	+ , TiCl4	PhNHMe, CH ₂ Cl ₂ , -20°	(20)	92
тмѕ	TiCl ₄	PhNHMe, CH ₂ Cl ₂ . –20°	(43)	92
TMSO CI	AgClO4	MeNO ₂ , 0°, 1 h	(82)	19
TMSOH	TiCl4	PhNHMe, CH ₂ Cl ₂ , -20°	(15)	92
	\bigcirc	_		160
¹⁰ O MeO Ph	, AICI3	РһМе, -78 to 0°	OMe Ph (10)	157
	, AICl3	PhMe, -78 to 0°	0 (36)	157
тмѕон	TiCl ₄	PhNHMe, CH ₂ Cl ₂ , -20°	(20)	92
TMSOH	TiCl ₄	PhNHMe, CH ₂ Cl ₂ , -20°	(58)	92
	, AgBF4	CH2Cl260°	+ + (76) 97:3	25, 161

TABLE II. [4+3] CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continue	ed)
B. With Carbocyclic Dienes (Continued)	

Cation Precursor	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	, AgBF4	CH ₂ Cl ₂ , -60°	(42)	162, 162a
R = TBS, TIPS, BOM	, AgBF4	CH ₂ Cl ₂ , -60°	(38-44) 0	162a, 161. 163
C ₁₁ EtO ₂ C CO ₂ Et TMSO	TiCl ₄	CH ₂ Cl ₂ , 0°, 3 h	CO_2Et CO_2Et (55)	153
C ₁₆ TMS Ph OH Ph	TiCl4	CH ₂ Cl ₂ , PhNHMe, -20°	Ph Ph (21)	92

 TABLE II. [4+3] CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continued)

 B. With Carbocyclic Dienes (Continued)

Conditions Cation Precursor Reactants Product(s) and Yield(s) (%) Refs. C_3 $\overbrace{\substack{N\\ I\\ CO_2Me}}^{N}, Et_2Zn$ CO₂Me C₆H₆, 0° to rt, 23 h (59) 56 N . Et₂Zn CO₂Me C_5 CO₂Me C_6H_6 , 0° to rt, 20 h (55) 56

 TABLE II. [4+3]
 CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continued)

 C. With Pyrrole Derivatives

Cation Precursor	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
			0	
MeO	, AgO ₂ CCF ₃ , Na ₂ CO ₃	C ₆ H ₆ , isopentane rt, 30 h	I (15)	34
	$\langle \rangle$, AgO ₂ CCF ₃ , Na ₂ CO ₃	CCl ₄ , -10°, 1 h	I (31)	164
тмзоСно	$\langle 0 \rangle$, SnCl ₄	CH ₂ Cl ₂ , -78°, 10 min	OH (43)	144
TMS0 Cl	, AgClO4	MeNO ₂ , 0°, 7 h	$\mathbf{I} (80) \boldsymbol{\alpha} : \boldsymbol{\beta} = 89 : 11$	19
	, AgClO4	DME, Et ₂ O, 40°	1 (45) $\alpha:\beta=80:20$	19
$Br \xrightarrow{O} Br \\ Br Br Br$	OH, Et ₂ Zn	C_6H_6 , 0° to rt, 2 h	Br, O, Br O, OH (51)	165
	OH, Et ₂ Zn	C_6H_6 , 0° to rt, 2 h	Br OH (55)	165
			Q	
	, AgClO4	MeNO ₂ , 0°, 0.5 h	$(87) \alpha : \beta = 1 : 1$	19
тмзо	, TMSOTF	CH ₂ Cl ₂ , -50°, 3 h	о о о о (12)	153
	, TMSOTF	CH ₂ Cl ₂ , -78°, 3 h	O O (67)	152
	, TMSOTf	CH ₂ Cl ₂ , -78°, 3 h	OMe (54)	152
		CH ₂ Cl ₂ , -78°, 3 h	О	152
	O SnBu ₃	EtNO ₂ , -78°, 2.5 h	OMe O SnBu ₃ (33)	119

TABLE II. [4+3]	CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continu	ied)
	D. With Furan Derivatives	

	Cation Precursor	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₅				0	
T	mso Br	$\langle O \rangle$, ZnCl ₂	CH ₂ Cl ₂ , -78°, 1.5 h	0 I (97)	36
T		, AgClO4	Et ₂ O, THF, 0°	I (85)	147, 19
		, AgClO ₄	MeNO ₂ , 0°, 0.5 h	I (92)	19
		$\langle 0 \rangle$, AgClO ₄ , Al ₂ O ₃	C ₆ H ₆ , rt, 3 h	I (91)	19
		, AgClO4	Et ₂ O, THF, 0°, 45 min	A (33) + O B (2)	147, 19 ·
		, AgClO4	MeNO ₂ , 0°, 0.5 h	A + B (92); A:B = 65:35	19
T		, AgClO4	MeNO ₂ , 0°, 0.5 h		147, 19
		, AgClO4	Et ₂ O, THF, 0°, 1 h		19
		, AgClO ₄	MeNO ₂ , 0°, 0.5 h	CI. (57)	19
т		⟨⟩, AgClO₄	MeNO ₂ , 0°, 1 h	O CI (78) O	19
~	O Br Br	$\langle \bigcup_{O}$, Et ₂ Zn	0° to rt, 22 h	$(53) \alpha: \beta = 9: 1$	56
7	отмя	SnCl4	CH ₂ Cl ₂ , -78°, 2 h	о состосно (36)	153
~	≻=c=< ^H _{Br}	KOBu-r	Hexanes, -10° to rt, 12 h		166
-	O H NMe ₂	$\langle \rangle$	H*, rt		167
、	s – (°	(), PR3	Furan, MeOH		168
	O Br Br	HO OH, Et ₂ Zn	С ₆ Н ₆ , п	но он (8)	165

TABLE II. [4+3] CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continued) D. With Furan Derivatives (Continued)

	Cation Precursor	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
		OH, Et ₂ Zn	С ₆ Н ₆ , п	о о о о о о о о о о о о о (56)	165
		⟨OAc	C ₆ H ₆ , n	OAc (55)	165
		OH, Et ₂ Zn	С ₆ Н ₆ , п	О (46)	165
C.		, Et ₂ Zn	С ₆ Н ₆ , п		165
C ₆	TMSO	, AgClO4	MeNO ₂ , 0°, 0.5 h		19
	TMSO O2CCF3	$\left\langle \bigcup_{O} \right\rangle$, ZnCl ₂	CH ₂ Cl ₂ , DIEA, 0°		15
		, AgClO4	MeNO ₂ , 0°, 0.4 h		19
	TMSO	Accio,			19
	$Br \xrightarrow{O}_{Br} Br Br$	$\langle 0 \rangle$, sgold $\langle 0 \rangle$, Et ₂ Zn	С ₆ Н ₆ , 0° ю п, б h	$\mathbf{Br}, \qquad \mathbf{O} \qquad \mathbf{Br} \qquad (10)$	56
-	Me N	, AgBF4	CH ₂ Cl ₂ , reflux, 1-3 h	Me N (60)	169
C ₇		, AgClO4	MeNO ₂ , 0°, 1 h	O O I (49)	19
		, AgClO ₄	THF, Et ₂ O, 0°, 1 h	I (8)	19
		, AgCIO4	MeNO ₂ , 0°, 0.5 h	0 Cl 0 (66)	19
	TMS O ₂ CCF ₃	$\left\langle \bigcup_{O} \right\rangle$, $ZnCl_2$	CH ₂ Cl ₂ , DIEA, 0°	EtO ()	15
	EIO	$\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	MeCN, DIEA, rt	O (72)	156

TABLE II. [4+3] CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continued) D. With Furan Derivatives (Continued)

	Cation Precursor	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	TMSO , , , , , , , , , , , , , , , , , , ,	$\left< \bigcirc \right>$, AgCIO4	MeNO ₂ , 0°, 1 h	Bu- <i>t</i> (84)	19
		, AgClO4	THF, Et ₂ O, 0°, 1 h	I (35)	19
	i-Pr	, AgBF4	CH ₂ Cl ₂ , reflux, 1-3 h	<i>i</i> -Pr N (95)	169
		, AgCIO ₄	MeNO2, 0°, 0.5 h	I (86)	19
C ₁₀		, AgClO ₄	THF, Et ₂ O, 0°, 0.5 h	I (34)	19
		, AgBF4	CH ₂ Cl ₂ , -60°	(68)	25, 170
	\sim	, AgBF4	CH ₂ Cl ₂ , -78°, 4 h	O Y T Z O	48
CII	XYZOTIPSHHMeHHHOTIPSHHHMe EtO_2C CO_2Et			(65) (78) (9) (70) 0	
	тмбо	, TiCl4	CH ₂ Cl ₂ , 0°, 3 h	O CO_2Et (15)	153
6		, AgBF4	CH ₂ Cl ₂ , reflux, 1-3 h	i-Pr N (40)	169
C ₁₂	NO ₂ Fe	Ph O, AlCl ₃ Ph	CH ₂ Cl ₂ , 30 h	Ph O ^{Fe} (20) Ph NO ₂	171
U14	Ac Fe	Ph O, AlCl ₃ Ph	CH ₂ Cl ₂ , 24 h	$ \begin{array}{c} $	171
C ₁₉	€ Fe €	Ph O, AICl ₃ Ph	CH ₂ Cl ₂ , 29 h	Ph OFe (32) Ph Bz Ph	171

TABLE II. [4+3] CYCLOADDITION OF ALLYL CATIONS (SOLVOLYTIC CONDITIONS) (Continued) D. With Furan Derivatives (Continued)

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
o Br	. Et ₃ N	CF3CH2OH. rt, 15 h	(45)	44
	, NaOCH2CF3	СН ₃ СН ₂ ОН, п		44
	, NaOCH2CF2CHF2	CF ₂ HCF ₂ CH ₂ OH, 15 h	0 A + B (42:58) (15) 0 0 B	72
	NaOCH ₂ CF ₂ CHF ₂	CF ₂ HCF ₂ CH ₂ OH, 15 h	(33) H = 0	72
	NaOCH ₂ CF ₂ CHF ₂	CF2HCF2CH2OH, 15 h	(13)	72
CI	, NaOCH3	MeOH, -20°, 4 h	0 I (5)	172
	, NaOCH ₂ CF ₃	CF ₃ CH ₂ OH, 1.5 h	I (44)	172
	, NaOCH ₂ CF ₃	CF3CH2OH, 0°, 30 min	(52)	172
	. Ag ₂ O	-		172a

TABLE III. [4+3] CYCLOADDITION OF HALOKETONES (BASE CONDITIONS) A. With Open-Chain 1,3-Dienes

	Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
C3		NaOCH ₂ CF ₂ CHF ₂	F2CHCF2CH2OH, 0°	Cl _n ^O (91)	172Ь
C		NaOCH ₂ CF ₂ CHF ₂	F2CHCF2CH2OH, 0°	CI 0 (69)	172ь
C4	MsO	, Et ₃ N, LiClO ₄	Et ₂ O		173
-,	O Br	NaOCH ₂ CF ₂ CHF ₂	CF2HCF2CH2OH, 20 h	" " " " " " " " " " " " " " " " " " "	72
		, NaOCH ₂ CF ₂ CHF ₂	CF2HCF2CH2OH, 20 h	"	72
		NaOCH ₂ CF ₂ CHF ₂	CF ₂ HCF ₂ CH ₂ OH, 20 h	(74)	72
	MsO	, Et ₃ N, LiClO ₄	Et ₂ O	O (52)	173
	O CI	NaOMe	MeOH, 0°, 30 min	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	172
		, NaOCH ₂ CF ₃	CF ₃ CH ₂ OH, 0°, 15 min	A + B (79), A:B = 70:30	172
		, Et_3N , $LiClO_4$	Et ₂ O, 3.5 h	A + B (43), A:B = 71:29 O	172
		NaOCH ₂ CF ₃	CF ₃ CH ₂ OH, 0°, 30 min	(58)	172
		, Et ₃ N	CF ₃ CH ₂ OH, 53 h	0 I (49)	172
C₄		, Et ₃ N, LiClO ₄	Et ₂ O, 76 h	I (73)	172
J	CI	NaOCH ₂ CF ₃	CF ₃ CH ₂ OH, 0°		174
		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	CF ₃ CH ₂ OH, 3 d	I (51)	48
		, Et ₃ N	CHF ₂ CF ₂ CH ₂ OH, 3 d	I (65)	48

TABLE III. [4+3] CYCLOADDITION OF HALOKETONES (BASE CONDITIONS) (Continued) B. With Carbocyclic Dienes

	Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
		, Et ₃ N	СF ₃ CH ₂ OH, п		48
		, Et ₃ N, LiClO ₄	Et ₂ O	0 (-)	174
C7	0			N	
	CI	, Et ₃ N	CF ₃ CH ₂ OH, 3 d	I (17)	48
		, Et ₃ N	CF ₃ CF ₂ CH ₂ OH, 1 d	I (43)	48
C ₁₀		, Et ₃ N	CF3CH2OH, rt, 3 d		48
C11		Et ₃ N	CF ₃ CH ₂ OH, 0°	$\begin{array}{c} & & & \\$	95, 175
		, Et ₃ N, LiClO ₄	Et ₂ O	A + B + C (46), A:B:C = 3.7:1:2.8	175

TABLE III. [4+3] CYCLOADDITION OF HALOKETONES (BASE CONDITIONS) (Continued) B. With Carbocyclic Dienes (Continued)

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
$ \begin{array}{c} C_6 & O \\ $	N CO ₂ Me, Ag ₂ O	_	$E = CO_2 Me$ ()	172a
	$\overbrace{\substack{N\\ CO_2Bu-t}}^{N}, Et_3N$	CF ₃ CH ₂ OH, rt	r-BuCO ₂ N (13)	48
	N, Ag ₂ O CO ₂ Me	_	$E = CO_2CH_3$	172a

 TABLE III. [4+3]
 CYCLOADDITION OF HALOKETONES (BASE CONDITIONS) (Continued)

 C. With Pyrrole Derivatives
Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
O			0	
CI	, NaOCH ₂ CF ₃	CF ₃ CH ₂ OH, 20 min		172b
CI CI	`0' //			
	(1), Et ₃ N, LiClO ₄	Et ₂ O, 2.5 h	I (12)	172b
	\bigcirc , NaOCH ₂ CF ₂ CHF ₂	F2HCCF2CH2OH,	I (70)	172b
		0° to rt, 20 min	0	
		F2HCCF2CH2OH, 0°	(95)	172b
	NaOCH ₂ CF ₂ CHF ₂			
	1. (CH ₂) _n CO ₂ Me.	FaHCCFaCHaOH, 4 h	$\frac{n}{2}$ (34)	72
	NaOCH ₂ CF ₂ CF ₂ H		$(CH_2)_n CO_2 Me, 3 (32)$ 4 (30)	
о	2. Zn/CuCl	MeOH, 15 h	ů ci	
CI CI	, Et ₃ N, LiClO ₄	Et ₂ O, rt, 2.5 h		42, 43,
ĊI ĊI				45
	\mathcal{U}_{O} , Et ₃ N	CF ₃ CH ₂ OH	·I (—)	176, 38
	, Et ₃ N	MeOH, rt, 3 d	I (54)	71, 177
	0			
	\sim , Et_3N	CF ₃ CH ₂ OH, rt, 3.5 h		128
	, Et ₃ N	МеОН	L (45)	168
	0_			100
		CT CH CH : 00	CI, CI CH(OMe)	
	O^{2} CH(OMe) ₂ , Et ₃ N	CF ₃ CH ₂ OH, rt, 90 mm	(63)	176, 177
			$CH(OMc)_2,$	
CICI				
	$\langle \rangle$, Et ₃ N, LiClO ₄	Et ₂ O, rt, 2.5 h		42, 45
	, Et ₃ N	CF ₃ CH ₂ OH, rt, 75 min	I (52)	43
0 	`O`		o L.C.	
	, Et ₃ N, LiClO ₄	Ει ₂ Ο, π	(5) $A:B(4:1)(68)$	42
	-			
	, EtaN. LiCIO.	Et ₂ O rt		40
	0, 1-3, 1, 2, 2, 2, 4, 4	<u>-</u>	$A + B (68) A \cdot B - 4 \cdot 1$	τυ
0			$A + B (00), A \cdot B = 4.1$	
4s0	, Et ₃ N	CF ₃ CH ₂ OH, п, 11 d	(-0) (13)	173
	0			

TABLE III. [4+3] CYCLO	ADDITION OF HALOKETONES	(BASE CONDITIONS) (Continued)
	D. With Furan Derivatives	

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	$\left< \underbrace{O} \right>$, Et ₃ N, LiClO ₄	Et ₂ O, rt, 2 h		42
	$\overbrace{0}^{}$, Et ₃ N, LiClO ₄	Et ₂ O, rt	$Cl_{v_{t}} \bigcirc O$ $A + B (68), A:B = 4:1$	40
OMe Cl	$\langle 0 \rangle$, Et ₃ N, LiClO ₄	Et ₂ O, π, 24 h	(44)	1726
	\int_{0} , Et ₃ N, LiClO ₄	Εt ₂ Ο, π	.OMe (38)	172Б
OMs OMs	, NaOCH ₂ CF ₃	CF3CH2OH, 24 h	O ()	172Ь
	\overbrace{O} , Et ₃ N, LiClO ₄	Et ₂ O, rt, 6 h	A + O B	42, 178
	$\langle 0 \rangle$, NaOCH ₂ CF ₃	CF3CH2OH, rt, 1 d	A + B (78), A:B = 81:19 A + B (93)	43, 45
	$\left< \bigcup_{O} \right>$, Et ₃ N	MeOH, 60 d	A + B (39)	44, 47
	, NaOMe	MeOH, 48 h	A + B (53)	44
0	\bigvee_{O} , Et ₃ N	CF3CH2OH, rt, 5 d	A + B (77)	45
Br	$\left\langle \bigcup_{O} \right\rangle$, Et ₃ N	MeOH, n, 3 d	A + B (52)	47, 44
	$\langle \rangle_{O}$, NaOCH ₂ CF ₃	CF ₃ CH ₂ OH, 1 d	A + B (93)	43, 45
	(1), Et ₃ N, AgBF ₄	MeCN, rt, 16 h	A + B (80) O	37
	\bigvee_{O} , Et ₃ N	MeOH, n, 4 d	" " " " " " " " " " " " " " " " " " "	44
	, Et ₃ N, AgBF ₄	MeCN, 16 h	I (53)	37
	, Et ₃ N, AgBF ₄	MeCN, 16 h	0 """ 0 (65)	37
	, Et ₃ N, AgBF ₄	MeCN, 16 h		37
	NaOCH ₂ CF ₂ CF ₂ H	F ₂ HCCF ₂ CH ₂ OH	I (87)	72

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Refs.
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}, E_{1}N, LiClO_{4}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}, E_{1}N, LiClO_{4}\\ \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array}\\ \end{array} $ $ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}, E_{1}N, CF_{3}CH_{2}OH, \pi, 25 d \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array}\\ \end{array} $ $ \begin{array}{c} \end{array}\\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array}\\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \end{array} $	72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42
$ \begin{array}{c} \left(\bigcup_{O}^{O}\right), \text{NaOCH}_2\text{CF}_3 & \text{CF}_3\text{CH}_2\text{OH}, \text{rt}, 29 \text{ d} & \text{I} (56) \\ \left(\bigcup_{O}^{O}\right), \text{EI}_3\text{N}, \text{LiCIO}_4 & \text{EI}_2\text{O} & \begin{array}{c} \left(\bigcup_{O}^{O}\right), A + \bigcup_{O}^{O} + B \\ A + B (49), A \cdot B = 1:1 \\ \end{array}\right) $ $ \begin{array}{c} \left(\bigcup_{O}^{O}\right), \text{EI}_3\text{N}, \text{LiCIO}_4 & \text{EI}_2\text{O}, 117 \text{ d} \\ \left(\bigcup_{O}^{O}\right), \text{NaOCH}_2\text{CF}_3 & \text{CF}_3\text{CH}_2\text{OH} & \text{I} (56) \\ \end{array}\right) $ $ \begin{array}{c} \left(\bigcup_{O}^{O}\right), \text{EI}_3\text{N} & \text{CF}_3\text{CH}_2\text{OH} & \text{I} (56) \\ \end{array} $ $ \begin{array}{c} \left(\bigcup_{O}^{O}\right), \text{EI}_3\text{N} & \text{CF}_3\text{CH}_2\text{OH} & \text{I} (56) \\ \end{array} $	45, 43
$\int_{O}^{O} F_{13}N, LiClO_{4} = E_{2}O$ $\int_{O}^{O} F_{13}N, LiClO_{4} = E_{2}O, 117 d$ $\int_{O}^{O} F_{13}N, LiClO_{4} =$	45, 43
$ \begin{array}{cccc} & & & & & \\ & & & & \\ & &$	40
(1), NaOCH ₂ CF ₃ CF ₃ CH ₂ OH I (56) (1), Et ₃ N CF ₃ CH ₂ OH, 48 h (147)	39
M_{SO} , Et_3N $CF_3CH_2OH, 48 h$ I (47)	178
	173
(1), Et ₃ N, LiClO ₄ Et ₂ O, 0.5 h I (68)	173
$Cl \qquad \qquad$	40
$Cl \qquad \qquad$	39
(68)	40
$MeO \xrightarrow[C]{} O \\ Cl \\ O \\ $	40
Cl Cl Cl Cl Cl Cl Cl Cl	42
(73), NaOMe CF ₃ OH, 30 min I (73)	172
$\langle O \rangle$, Et ₃ N MeOH, rt, 3 d I (37)	172
. NaOCH ₂ CF ₃ CF ₃ CH ₂ OH, rt, 20 min I (80)	172

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	NaOCH ₂ CF ₃	CF ₃ CH ₂ OH, 0°, 45 min		172
Br	$\left\langle \bigcup_{\mathbf{O}} \right\rangle$, Et ₃ N, LiClO ₄	Et ₂ O, 5 h	0 (63)	42
	, Et ₃ N	CF3CH2OH, n, 10 d	O I (68)	43, 45
	, E13N	CF ₃ CH ₂ OH, rt, 4 d	I (73)	43
0	, NaOCH ₂ CF ₃	CF3CH2OH, n, 3 d	I (91)	43
	✓ , Et₃N	MeOH, 2 d	I (30)	47
	$\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\rangle$, Et ₃ N	CF3CH2OH, rt, 2 h		173
$ \begin{array}{c} $	⟨). Ag₂O	rt, 20 h	CN (22)	39, 46
	√ , Ag ₂ O	rt, 4 d	(31)	39
n-Pr Cl	, Et ₃ N, LiClO ₄	Eł ₂ O, rt	$\begin{array}{c} 0 \\ n-\Pr_{n} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	40
i-Pr Cl	, Et ₃ N, LiClO ₄	Et ₂ O, rt	A + B (78), A:B = 5:1	40
d ci	, NaOCH ₂ CF ₃	CF3CH2OH, rt		174
	, Et ₃ N, LiClO ₄	Et ₂ O, 45 h	I (81)	42
	, Et ₃ N	CF3CH2OH, rt, 3 d	I (70)	48
	$(i-Pr)_2$ NEt	CF3CH2OH, rt, 3 d	I (63)	48
	$\langle 0 \rangle$, proton sponge	CF3CH2OH, rt, 3 d	I (32)	48
	, Et ₃ N	СF ₃ CH ₂ OH, п, 3 d	0 1 0 (66)	48

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	, Et ₃ N	CF3CH2OH, rt, 2 d	~~~ (25)	48
	MeO O NaH	Et ₂ O, 15 h	MeO ()	179
Br	$\langle 0 \rangle$, Et ₃ N	CF3CH2OH, rt, 3 d	0 1 (84)	43, 45
	, Et ₃ N, LiClO ₄	Et ₂ O, 4.5 h	I (68)	42
	, base	CF3CH2OH, rt, 19 months		178
	, base	CF ₃ CH ₂ OH, rt	(O) I ()	178
	, Et ₃ N, LiClO ₄	Et ₂ O, 24 h	I (83)	42
O Br	, Et ₃ N, LiClO ₄	Et ₂ O, 5 h	I (79)	42
0	$\langle 0 \rangle$, Et ₃ N, LiClO ₄	MeOH, 2 d	I () O	47
Pr-n Br	$\langle \rangle$, Et ₃ N, AgBF ₄	MeCN, rt, 6 h	Pr-n	37
	, Et ₃ N, AgBF ₄	MeOH, 2 d	I ()	47
	, Ag ₂ O	rt, 18 h	0 	39
	, Ag₂O	rt, 14 h	CN (45)	39
	, Ag ₂ O	rt, 19 h	0 CN (50)	39
° CI	, Et ₃ N	CF3CH2OH, 12 h	0 	48
	, Et ₃ N	СF ₃ CH ₂ OH, п, 3 h		48
	, (<i>i</i> -Pr) ₂ NEt	CF ₃ CH ₂ OH, 1.5 h	A + B (60), $A:B = 7:1A + B$ (47), $A:B = 20:1$	48
	, DBU	CF ₃ CH ₂ OH, 1.5 h	A + B (33), A:B = 7:1	48

	Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
		, Et ₃ N	CF ₃ CH ₂ OH, 2 h	$\begin{array}{c} \mathbf{R}^{1} \\ \mathbf{R}^{2} \\ \mathbf{R}$	48
	CI	$\langle \bigcup_{O} \rangle$, Et ₃ N	CF ₃ CH ₂ OH, n, 3 d	(49)	48
	CI	$\langle 0 \rangle$, Et ₃ N	CF ₃ CH ₂ OH, rt, 3 d	0 0 0 0 0 (63)	48
	CI	$\left< _{O} \right>$, Et ₃ N, LiClO ₄	Et ₂ O, 34 d	0 I (11)	42
	Br	, Et ₃ N, LiClO ₄	Et ₂ O, 11 d	I (16)	42
-		, Et ₃ N, LiClO ₄	Et ₂ O, rt		40
C ₈		\bigvee_{O} , Et ₃ N	СF ₃ CH ₂ OH, п, 3.5 h	0 (75)	173
		⟨⟩, Ag₂O	64 h		39
	CI	, Et ₃ N, LiClO ₄	Et ₂ O		40
	CI	, Et ₃ N, LiClO ₄	Et ₂ O	I (75)	40
C ₁₀	n-C ₇ H ₁₅	, Et ₃ N, LiClO ₄	Et ₂ O	$CI \underbrace{CI}_{C_{7}H_{15}-n} (59)$	40
	Ph CN Br	$\left< \bigcup_{O} \right>$, Ag ₂ O	_		41
	o-MeOC ₆ H ₄	, Et ₃ N	CF ₃ CH ₂ OH, rt, 24 h	o-MeOC ₆ H ₄ , (73)	180
C	0 CI	∠ Et₃N	CF ₃ CH ₂ OH, rt, 3 d	0 (61) 0 (61)	48
С _П	Ph \downarrow CN Br CN	Ag2O	-	Ph. CN ()	41

	Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	<i>p</i> -ClC ₆ H ₄ Br	⟨⟩, Ag₂O	-	<i>p</i> -ClC ₆ H ₄ , O CN ()	41
	Me0 Me0	$\langle \bigcup_{O} \rangle$, Et ₃ N	СF ₃ CH ₂ OH, п, 24 h	MeO (28)	41
	Br Br	$\langle \\ 0 \rangle$, Et ₃ N	CF ₃ CH ₂ OH, rt, 24 h	Br o (54)	41
	O Br Ph	OMe, Et ₃ N OMe	CF ₃ CH ₂ OH	O O O O O Me (26)	17, 177
	PhthN Br Br	, Et ₃ N	CH ₃ CH ₂ OH, 0 to 45°, 4 h	Br, NPhth (60)	175
	o CI H	, Et ₃ N	CF3CH2OH, rt, 3 d	0 (71)	48
	O CI H		CF3CH2OH, rt, 3 d		48
	Cl.	, Et ₃ N	CF3CH2OH, n, 10 d	I (66)	48
C ₁₂	h p-MeOC ₆ H ₄ Br CN	. Ag ₂ O	-	p-MeOC ₆ H ₄ , ()	41
	<i>m</i> -MeOC ₆ H ₄ Br CN	(), Ag ₂ O	_	m-MeOC ₆ H ₄ , ()	41
	OMe Br MeO MeO	$\left< \bigcup_{O} \right>$, Et ₃ N	CF3CH2OH, n,	MeO MeO MeO (10)	180
	Br Br	$\left< \underbrace{O}_{O} \right>$, Et ₃ N	CF3CH2OH, rt,		180
	CI	$\left< \underbrace{O} \right>$, Et ₃ N, LiClO ₄	Et ₂ O, 30 h		42

Haloketone	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
O Br	, Et ₃ N, LiClO ₄	Et ₂ O, 23 h		42
	⟨, Ag₂O	rt, 20 h	$H = \begin{array}{c} & (20) \\ & 0 $	39
C_{15} $Ph \xrightarrow{O} Ph$ Cl	, 2,6-lutidine	DMF, 96 h	$Ph \underbrace{0}_{O} Ph I (18)$	181
	, Et ₃ N	МеОН	I (—)	47
	, Al ₂ O ₃	_	Ι ()	96

 TABLE III. [4+3] CYCLOADDITION OF HALOKETONES (BASE CONDITIONS) (Continued)

 D. With Furan Derivatives (Continued)

Substrate	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
		<i>п-</i> С ₅ H ₁₂ , <i>h</i> ν, 11 h	(37)	182
³ O CCl ₃		С ₆ Н ₆ , <i>hv</i> , 25 h		183, 184

 TABLE IV. PHOTOINITIATED [4+3] CYCLOADDITIONS

 A. With Carbocyclic Dienes

	Substrate	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
C7			СF ₃ CH ₂ OH, <i>hv</i> , 35 h		50, 51
	Å	$\langle \rangle$	<i>hv</i> , 20 h	о (50) О	182
C ₈	0=	$\langle \rangle$	67°, hv		185, 186
		$\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$, Et ₃ N	hv		184
	O	$\langle \rangle$	ħν		49
	↓ ↓	$\langle \rangle$	Et ₂ Ο, <i>hν</i>		187
C9		$\langle \rangle$	Et ₂ O, <i>hv</i>		187
		$\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	CF ₃ CH ₂ OH, hv		52
C ₁₀	NC CN		<i>hv</i> , 20 min	(9) NC CN	188
			С _б Н _б , <i>hv</i> , 18 h	$ \begin{array}{c} 0 \\ \hline \hline$	189

TABLE IV. PHOTOINITIATED [4+3] CYCLOADDITIONS (Continued) B. With Furan

	Substrate	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
		$\langle \rangle$	С ₆ Н ₆ , <i>hv</i> , 16 h	O + CI + O + OMe $(21) + O + OMe$ $(21) + O + OMe$ (32)	189
C ₁₂	°	$\langle \rangle$	hv	0 12 () 0 0	190

 TABLE IV. PHOTOINITIATED [4+3] CYCLOADDITIONS (Continued)

 B. With Furan (Continued)

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₀	CI O	Et ₃ N, LiClO ₄ , Et ₂ O, rt, 4 d		191
		Et ₃ N, LiCłO ₄ , Et ₂ O, rt, 22 h	H (76)	191
C11	ТМЯ	Tf₂O, 2,6-lutidine, CH₂Cl₂, −78°	H (65)	53
		Et ₃ N, LiClO ₄ , Et ₂ O, π, 12 h		191
	Br O Br	Fe ₂ (CO) ₉ , C ₆ H ₆ , 80°, 3 h		192
		Et ₃ N, LiClO ₄ , Et ₂ O, 53 h	(70)	193
	CI CI	Et ₃ N, LiClO ₄ , Et ₂ O, rt, 19 h		191

TABLE V. INTRAMOLECULAR [4+3] CYCLOADDITIONS

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	<i>hv</i> , THF, 2 h	$ \begin{array}{c} 0 \\ N \\ N \\ 0 \\ 0 \end{array} $ (75)	194, 195
тмѕ он	Tf ₂ O, 2,6-lutidine, CH ₂ Cl ₂ , -78°		196
O Br Br	Fe ₂ (CO) ₉ , C ₆ H ₆ , 80°, 3 h		192
QDE1	 LDA, CF₃SO₂Cl LiClO₄, Et₃N, Et₂O 	(55)	10, 55. 197
PhSO ₂	TiCl ₄ , CH ₂ Cl ₂ , -78°		10
	<i>hν</i> , CF ₃ CH ₂ OH, 0.5 h		52
c_{13}	<i>hv</i> , THF, 2 h	$ \begin{array}{c} & & \\ & & $	194, 195
	<i>hv</i> , MeCN, 35°, 2.5 h <i>hv</i> , MeCN, 52°, 17.3 h <i>hv</i> , MeCN, 52°, 2.2 h <i>hv</i> , MeCN, 52°, 2.2 h <i>hv</i> , MeCN, 52°, 2.4 h <i>hv</i> , MeCN, 52°, 3.5 h <i>hv</i> , MeCN, 52°, 5 h <i>hv</i> , acetone, 43°, 3.5 h <i>hv</i> , C ₆ H ₆ , 45°, 2.5 h <i>hv</i> , CH ₂ Cl ₂ , 35°, 2.5 h <i>hv</i> , CH ₂ Cl ₂ , 35°, 2.5 h <i>hv</i> , CH ₂ Cl ₂ , 35°, 2.5 h <i>hv</i> , Et ₂ O, 34°, 2.5 h, LiClO ₄ <i>hv</i> , Et ₂ O, 34°, 2.5 h, LiClO ₄ <i>hv</i> , Et ₂ O, 34°, 2.5 h, LiClO ₄ <i>hv</i> , MeCN, 10°, 2.5 h <i>hv</i> , MeCN, 35°, 2.5 h <i>hv</i> , MeCN, 35°, 2.5 h <i>hv</i> , MeCN, 35°, 2.5 h <i>T</i> iCl ₄ , -78°, 0.3 h ZnCl ₂ , -78°, 1 h BF ₄ *Et ₂ O, -78°, 1 c-22°, 4.6 h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	198 198 198 198 198 198 198 198 198 198
	AlCl ₃ , –78°, 0.8 h AlCl ₃ , –78°, 0.8 h	(37) 1.3:1 (40) 1:2.3	199 199

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		hv, C ₆ H ₆		195
		<i>һ</i> ѵ, СҒ ₃ СН ₂ ОН, 2 һ		52
C		1. LDA, CF ₃ SO ₂ Cl 2. LiClO ₄ , El ₃ N	(49) + (49) + (7)	11, 55
C ₁₅	TMS OH	1. (CF ₃ CO) ₂ O, EtN(Pr- <i>i</i>) ₂ 2. ZnCl ₂ , Al ₂ O ₃ , -60°	H (16)	92
	OEt SO ₂ Ph	TiCl ₄ , CH ₂ Cl _{2,} –78°	A + B (SS) A = 6040	202, 203a
	OEt SO ₂ Ph	TiCl ₄ , CH ₂ Cl _{2,} –78°	0 (54)	202, 203a
	OEt SO ₂ Ph	TiCl ₄ , CH ₂ Cl _{2.} –78°		202, 203a
	MeO NC O	<i>hv</i> , C ₆ H ₆ , 7.5 h	MeO _{NC} (40)	189
	MeO H H	hv, (Pyrex)	MeO NC O (43)	189
		hv, CF ₃ CH ₂ OH	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52
		 LDA, CF₃SO₂Cl LiClO₄, Et₂O 		55
C16		 LDA, CF₃SO₂Cl NaOCH₂CF₃, CF₃CH₂OH 	I (69)	55
	OEt OH	(CF ₃ SO ₂) ₂ O, CH ₂ Cl ₂ 2,6-lutidine, –78°	$H = \frac{H}{H} $ (63)	204

CIG

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
			198
15	AlMe ₃ , CH ₂ Cl ₂ , -78°	I (71)	199
OEt OH OH	(CF ₃ SO ₂) ₂ O, CH ₂ Cl _{2,} 2,6-lutidine, -78°	(49) + (49) + (37)	204
MeO MeO ₂ C	hν	MeO - I + O = O = O = O = O = O = O = O = O = O	189
	hν, CF ₃ CH ₂ OH		52
	AIMe ₃ , CH ₂ Cl _{2,} -78°		199
	hv, MeCN	I (22)	198
Ts Et OEt	TiCl ₄ , CH ₂ Cl _{2.} –78°	Et 0 (66)	54, 202
PhSO ₂ O O O Me	TiCl ₄ , CH ₂ Cl ₂ , -78°	O (12)	205
OH OEt SPh	(CF ₃ SO ₂) ₂ O, CH ₂ Cl ₂ 2,6-lutidine, -78°	H O O O (48)	204
OEt OH OH	(CF ₃ SO ₂) ₂ O, CH ₂ Cl ₂ 2,6-lutidine, -78°	SPh (59)	204
MeO AcO	<i>hv</i> , C ₆ H ₆ , 30 h	MeO AcO (27)	195
	<i>h</i> ν, CF ₃ CH ₂ OH	0 (19)	52

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		1. LDA, CF ₃ SO ₂ Cl 2. LiClO ₄ , Et ₃ N	(63)	11, 55
C ₁₈		<i>hv</i> , C ₆ H ₆ , 3.5 h		195
ſ	Aco N ₃	<i>hv</i> , С ₆ Н ₆ , 1.5 h		195
C ₁₉	OEt SOPh	(CF ₃ SO ₂) ₂ O, CH ₂ Cl ₂ 2.6-di- <i>tert</i> -butylpyridine	EtO SPh (53)	205
	OEt SOC ₆ H ₅	(CF ₃ SO ₂) ₂ O, CH ₂ Cl _{2,} 2,6-lutidine, rt	Eto SPh (86)	204
		1. LDA, (CF ₃ SO ₂) ₂ O 2. LiClO ₄ , Et ₂ O	(69)	11, 55

TABLE V. INTRAMOLECULAR [4+3] CYCLOADDITIONS (Continued)

TABLE VI. MISCELLANEOUS [4+3] CYCLOADDITIONS

3C Partner	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	O, [(<i>i</i> -PrO) ₃ P] ₄ Pd	C ₆ H ₆ , 80°	(86)	210
	0, [(<i>i</i> -PrO) ₃ P] ₄ Pd	C ₆ H ₆ , 80°	(90)	210
	0, [(<i>i</i> -PrO) ₃ P] ₄ Pd	C ₆ H ₆ , 80°	(92)	210
	, [(<i>i</i> -PrO) ₃ P] ₄ Pd	C ₆ H ₆ , 80*	(23)	210
	0, [(/-PrO) ₃ P] ₄ Pd	C ₆ H ₆ , 80°	(90)	210
	CO ₂ Me	[(<i>i</i> -PrO)₃P]₄Pd, THF, reflux	MeO ₂ C (76)	211
	ՇՕշԸԱշԸԱթԽ		CO-CH-CH Ph	
	X	[(i-PrO)3P]4Pd, THF, reflux	(88)	211
	TBDMSO CO ₂ Me	[(i-PrO)₃P]₄Pd, THF, reflux	TBDMSO CO ₂ Me (87)	211
	TBDMSO	[(i-PrO)₃P]₄Pd, THF, reflux	TBDMSO (65)	211
	TBDMSO TBDMSO	[(i-PrO)₃P]₄Pd, THF, reflux	TBDMSO (73)	211
	РМВО	[(i-PrO)3P]4Pd, THF, reflux	MeO ₂ C (80) PMBO	211
	O CO ₂ Me	Pd(OAc)2, (i-PrO)3P, BuLi, PhMe	O CO ₂ Me I (22)	212
		Pd(OAc) ₂ , dppe, THF, 60°	1 (37)	212

TABLE VI. MISCELLANEOUS [4+3] CYCLOADDITIONS (Continued)

3C Partner	Reactants	Conditions	Product(s) and Yield(s) (%)	Refs.
	$ \begin{array}{c} R^1 \\ R^2 \\ \underline{R^1} \\ R^2 \end{array} $	PhMe, 110 °	R^1 O N-Ph R^2 Ph	218
C ₁₄	Me Me Ph H (CH ₂) ₃		(3) (3) (9)	
Ph_N_Ph	X	LDA, THF, rt, 4 d	Ph (52)	219
$ \begin{array}{c} Ph \\ - \\ O \\ + \\ S \\ Ph \end{array} $	R^1 R^2 R^1 R^2	PhMe, 110 °	$\begin{array}{c} R^{1} \\ R^{2} \\$	216
C ₁₇	Me Me Me H (CH ₂)4		(71) (34) (66)	
PhNHCO -O + I S PhNHCO	$ \begin{array}{c} \mathbf{R}^{1} \\ \mathbf{R}^{2} \\ \hline \mathbf{M}^{2} \\ \hline \mathbf{M}^{2} \\ \mathbf{M}^{2} \\$	PhMe, 110 °	$PhNHCO \qquad \qquad$	216
C ₂₉				
		48 h		220

TABLE VI. MISCELLANEOUS [4+3] CYCLOADDITIONS (Continued)

8. Acknowledgments

We wish to express our sincere gratitude to Ms. Melanie Brown for her expert technical assistance during the preparation of this chapter.

References

- Rigby, J. H. in *Comprehensive Organic Synthesis*, Trost, B. M.; Fleming, I. Eds.; Pergamon: Oxford, **Vol.5**, 1991, pp. 617–643.
- Hosomi, A.; Tominaga, Y. in *Comprehensive Organic Synthesis*, Trost, B. M.; Fleming, I. Eds.; Pergamon: Oxford, Vol.5, 1991, pp. 593–615.
- 3. Mann, J. Tetrahedron 1986, 42, 4611.
- 4. Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1984, 23, 1.
- 4a. Kuja, E.; Giguere, R. J. Synth. Commun. 1995, 25, 2105.
- 5. Noyori, R.; Hayakawa, Y. Org. React. 1983, 29, 163.
- 6. Noyori, R. Ann. NY Acad. Sci. 1977, 225.
- 7. Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1973, 12, 819.
- Takaya, H.; Makino, S.; Hayakawa, Y.; Noyori, R. J. Am. Chem. Soc. 1978, **100**, 1765.
- Fierz, G.; Chidgey, R.; Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1974, 13, 410.
- 10. Harmata, M.; Elahmad, S.; Barnes, C. L. J. Org. Chem. 1994, 59, 1241.
- 11. Harmata, M.; Elahmad, S.; Barnes, C. L. Tetrahedron Lett. 1995, **36**, 1397.
- 12. Hoffmann, R. J. Am. Chem. Soc. 1968, 90, 1475.
- Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. J. Am. Chem. Soc. 1975, 97, 1302.
- 14. Hill, A. E.; Hoffmann, H. M. R. J. Am. Chem. Soc. 1974, 96, 4597.
- 15. Henning, R.; Hoffmann, H. M. R. Tetrahedron Lett. 1982, 23, 2305.
- Noyori, R.; Shimizu, F.; Fukuta, K.; Takaya, H.; Hayakawa, Y. J. Am. Chem. Soc. 1977, 99, 5196.
- 17. Bowers, K. G.; Mann, J. Tetrahedron Lett. 1985, 26, 4411.
- Rawson, D. I.; Carpenter, B. K.; Hoffmann, H. M. R. J. Am. Chem. Soc. 1979, **101**, 1786.
- 19. Shimizu, N.; Tanaka, M.; Tsuno, Y. J. Am. Chem. Soc. 1982, **104**, 1330.
- 20. Paquette, L. A.; Kravetz, T. M. J. Org. Chem. 1985, 50, 3781.
- Paquette, L. A.; Hathaway, S. J. Kravetz, T. M.; Hsu, L.-Y. J. Am. Chem. Soc. 1984, **106**, 5741.
- 22. Ashcroft, M. R.; Hoffmann, H. M. R. Org. Synth. 1978, 58, 17.
- 23. Ito, S.; Ohtani, H.; Amiya, S. Tetrahedron Lett. 1973, 1737.
- 24. Vinter, J. G.; Hoffmann, H. M. R. J. Am. Chem. Soc. 1974, 96, 5466.
- 25. Schmid, R.; Schmid, H. Helv. Chim. Acta 1974, 57, 1883.

- Hoffmann, H. M. R.; Clemens, K. E.; Smithers, R. H. J. Am. Chem. Soc. 1972, 94, 3940.
- 27. Cowling, A. P.; Mann, J. J. Chem. Soc., Perkin Trans. 1 1978, 1564.
- 28. Hayakawa, Y.; Baba, Y.; Makino, S.; Noyori, R. J. Am. Chem. Soc. 1978, **100**, 1786.
- 29. Giguere, R. J.; Rawson, D. I.; Hoffmann, H. M. R. Synthesis 1978, 902.
- 29a. Giguere, R. J.; Hoffmann, H. M. R.; Hursthouse, M. B.; Trotter, J. J. Org. Chem. 1981, **46**, 2868.
 - Hoffmann, H. M. R.; Weber, A.; Giguere, R. J. Chem. Ber. 1984, 117, 3325.
 - 31. Hoffmann, H. M. R.; Iqbal, M. N. Tetrahedron Lett. 1975, 4487.
 - 32. Ansell, M. F.; Mason, J. S.; Caton, M. P. L. J. Chem. Soc., Perkin Trans. 1 1984, 1061.
 - 33. Greenwood, G.; Hoffmann, H. M. R. J. Org. Chem. 1972, 37, 611.
 - Hill, A. E.; Greenwood, G.; Hoffmann, H. M. R. J. Am. Chem. Soc. 1973, 95, 1338.
 - 35. Hoffmann, H. M. R.; Joy, D. R.; Suter, A. K. J. Chem. Soc., B 1968, 57.
 - Sakurai, H.; Shirahata, A.; Hosomi, A. Angew. Chem., Int. Ed. Engl. 1979, **18**, 163.
 - 37. Mann, J.; Usmani, A. A. J. Chem. Soc., Chem. Commun. 1980, 1119.
 - Mann, J.; Wilde, P. D.; Finch, M. W. J. Chem. Soc., Chem. Commun. 1985, 1543.
 - Föhlisch, B.; Herter, R.; Wolf, E.; Stezowski, J. J.; Eckle, E. Chem. Ber. 1982, **115**, 355.
 - Föhlisch, B.; Flogaus, R.; Oexle, J.; Schädel, A. Tetrahedron Lett. 1984, 25, 1773.
- 41. Föhlisch, B.; Wolf, E. J. Chem. Res. (S) 1983, 166.
- 42. Herter, R.; Föhlisch, B. Synthesis 1982, 976.
- 43. Föhlisch, B.; Gehrlach, E.; Herter, R. Angew. Chem., Int. Ed. Engl. 1982, **21**, 137.
- 44. Föhlisch, B.; Gehrlach, E.; Stezowski, J. J.; Kollat, P.; Martin, E.; Gottstein, W. Chem. Ber. 1986, **119**, 1661.
- 45. Föhlisch, B.; Gehrlach, E.; Herter, R. Angew. Chem. Suppl. 1982, 241.
- Föhlisch, B.; Lutz, D.; Gottstein, W.; Dukek, U. Justus Liebigs Ann. Chem. 1977, 1847.
- 47. Föhlisch, B.; Gottstein, W.; Kaiser, R.; Wanner, I. Tetrahedron Lett. 1980, **21**, 3005.
- 48. Jin, S.-j.; Choi, J.-R.; Oh, J.; Lee, D.; Cha, J. K. J. Am. Chem. Soc. 1995, **117**, 10914.

- 49. Crandall, J. K.; Haseltine, R. P. J. Am. Chem. Soc. 1968, 90, 6251.
- 50. Barltrop, J. A.; Day, A. C.; Samuel, C. J. J. Chem. Soc., Chem. Commun. 1976, 822.
- 51. Barltrop, J. A.; Day, A. C.; Samuel, C. J. J. Am. Chem. Soc. 1979, **101**, 7521.
- 52. West, F. G.; Hartke-Karger, C.; Koch, D. J.; Kuehn, C. E.; Arif, A. M. J. Org. Chem. 1993, **58**, 6795.
- 53. Giguere, R. J.; Duncan, S. M.; Bean, J. M.; Purvis, L. Tetrahedron Lett. 1988, **29**, 6071.
- 54. Harmata, M.; Gamlath, C. B. J. Org. Chem. 1988, **53**, 6154.
- 55. Harmata, M.; Elomari, S.; Barnes, C. L. J. Am. Chem. Soc. 1996, **118**, 2860.
- 56. Mann, J.; Barbosa, L.-C. J. Chem. Soc., Perkin Trans. 1 1992, 787.
- 57. White, J. D.; Fukuyama, Y. J. Am. Chem. Soc. 1979, 101, 226.
- 58. Lautens, M.; Ma, S.; Yee, A. Tetrahedron Lett. 1995, **36**, 4185.
- Lautens, M.; Chiu, P.; Colucci, J. T. Angew. Chem., Int. Ed. Engl. 1993, 32, 281.
- 60. Lautens, M.; Chiu, P. Tetrahedron Lett. 1991, 32, 4827.
- 61. Sato, T.; Watanabe, M.; Noyori, R. Tetrahedron Lett. 1978, 4403.
- 62. Jacob, T. M.; Vatakencherry, P. A.; Dev, S. Tetrahedron 1964, 20, 2815.
- 63. Krapcho, A. P.; Mundy, B. P. J. Org. Chem. 1967, **32**, 2041.
- 64. Allinger, N. L.; Zalkow, V. B. J. Am. Chem. Soc. 1961, 83, 1144.
- Marshall, J. A.; Anderson, N. H.; Johnson, P. C. J. Org. Chem. 1970, 35, 186.
- 66. Heathcock, C. H.; Delmar, E. G.; Graham, S. L. J. Am. Chem. Soc. 1982, **104**, 1907.
- Forbes, M. D. E.; Patton, J. T.; Myers, T. L.; Maynard, H. D.; Smith, D. W.; Schulz, G. R.; Wagener, K. B. J. Am. Chem. Soc. 1992, **114**, 10978.
- Wender, P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc. 1995, **117**, 4720.
- 69. Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. 1993, 115, 4895.
- 70. Molander, G. A.; Carey, J. S. J. Org. Chem. 1995, 60, 4845.
- 71. Föhlisch, B.; Gottstein, W.; Herter, R.; Wanner, I. J. Chem. Res. (S) 1981, 246.
- 72. Föhlisch, B.; Gehrlach, E.; Geywitz, B. Chem. Ber. 1987, **120**, 1815.
- 73. Noyori, R.; Makino, S.; Takaya, H. J. Am. Chem. Soc. 1971, 93, 1272.
- 74. Fukuzawa, S.-i.; Fukushima, M.; Fujinami, T.; Sakai, S. Bull. Chem. Soc., Jpn. 1989, **62**, 2348.
- 75. Hojo, M.; Tomita, K.; Hirohara, Y.; Hosomi, A. Tetrahedron Lett. 1993,

34, 8123.

- 76. Chidgey, R.; Hoffmann, H. M. R. Tetrahedron Lett. 1978, 1001.
- 77. Hoffmann, H. M. R.; Chidgey, R. Tetrahedron Lett. 1978, 85.
- 78. Chidgey, R.; Hoffmann, H. M. R. Tetrahedron Lett. 1977, 2633.
- 79. Hosomi, A.; Otaka, K.; Sakurai, H. Tetrahedron Lett. 1986, 27, 2881.
- Wierenga, W.; Evans, B. R.; Woltersom, J. A. J. Am. Chem. Soc. 1979, 101, 1334.
- Noyori, R.; Makino, S.; Okita, T.; Hayakawa, Y. J. Org. Chem. 1975, 40, 806.
- 82. Monti, S. A.; Harless, J. M. J. Am. Chem. Soc. 1977, 99, 2690.
- 83. Busch, A.; Hoffmann, H. M. R. Tetrahedron Lett. 1976, 2379.
- 84. Hoffmann, H. M. R.; Vathke, H. Chem. Ber. 1980, 113, 3416.
- 85. Joshi, N. N.; Hoffmann, H. M. R. Tetrahedron Lett. 1986, 27, 687.
- 86. Kashman, K.; Rudi, A. Tetrahedron 1974, 30, 109.
- 87. Narula, A. S. Tetrahedron Lett. 1979, 1921.
- 88. Noyori, R.; Souchi, T.; Hayakawa, Y. J. Org. Chem. 1975, 40, 2681.
- 89. Siemionko, R. K.; Berson, J. A. J. Am. Chem. Soc. 1980, 102, 3870.
- 90. Hong, B.-c.; Sun, S.-s. Tetrahedron Lett. 1996, 37, 659.
- 91. Ishizu, T.; Mori, M.; Kanematsu, K. J. Org. Chem. 1981, 46, 526.
- Hoffmann, H. M. R.; Eggert, U.; Gibbels, U.; Giesel, K.; Koch, O.; Lies, R.; Rabe, J. Tetrahedron 1988, 44, 3899.
- Hoffmann, H. M. R.; Wagner, D.; Wartchow, R. Chem. Ber. 1990, 123, 2131.
- 94. Hardinger, S. A.; Bayne, C.; Kantorowski, E.; McClellan, R.; Larres, L.; Nuesse, M.-A. J. Org. Chem. 1995, **60**, 1104.
- 95. Walters, M. A.; Arcand, H. R. J. Org. Chem. 1996, 61, 1478.
- Cookson, R. C.; Nye, M. J.; Subrahmanyam, G. J. Chem. Soc., C 1967, 473.
- 97. Cookson, R. C.; Nye, M. J. Proc. Chem. Soc., London 1963, 129.
- 98. Noyori, R.; Baba, Y.; Hayakawa, Y. J. Am. Chem. Soc. 1974, 96, 3336.
- 99. Cowling, A. P.; Mann, J.; Usmani, A. A. J. Chem. Soc., Perkin Trans. 1 1981, 2116.
- 100. Noyori, R.; Makino, S.; Baba, Y.; Hayakawa, Y. Tetrahedron Lett. 1974, 1049.
- 101. Noyori, R.; Babay, Y.; Makino, S.; Takaya, H. Tetrahedron Lett. 1973, 1741.
- 102. El-Khawaga, A. M.; Hoffmann, H. M. R. Synlett 1990, 519.
- 103. Lautens, M.; DiFelice, C.; Huboux, A. Tetrahedron Lett. 1989, 30, 6817.

- 104. Ansell, M. F.; Caton, M. P. L.; Mason, J. S. Tetrahedron Lett. 1981, **22**, 1141.
- 105. Sato, T.; Noyori, R. Bull. Chem. Soc., Jpn. 1978, 51, 2745.
- 106. Buchs, P.; Ganter, C. Helv. Chim. Acta 1980, 63, 1420.
- 107. Sato, T.; Watanabe, M.; Noyori, R. Tetrahedron Lett. 1979, 2897.
- 107a. Sampeth, V.; Schore, N. E. J. Org. Chem. 1983, 48, 4882.
- 108. Noyori, R.; Kobayashi, H.; Sato, T. Tetrahedron Lett. 1980, 21, 2573.
- 109. Sato, T.; Kobayashi, H.; Noyori, R. Heterocycles 1981, 15, 321.
- 110. Sato, T.; Noyori, R. Tetrahedron Lett. 1980, 21, 2535.
- 111. Noyori, R.; Sato, T.; Kobayashi, H. Tetrahedron Lett. 1980, 21, 2569.
- 112. Sato, T.; Kobayashi, H.; Noyori, R. Tetrahedron Lett. 1980, **21**, 1971.
- 113. Sato, T.; Watanabe, M.; Noyori, R. Chem. Lett. 1980, 679.
- 114. Lautens, M.; Gajda, C. Tetrahedron Lett. 1993, 34, 4591.
- 115. Takaya, H.; Hayakawa, Y.; Makino, S.; Noyori, R. J. Am. Chem. Soc. 1978, **100**, 1778.
- 116. Hayakawa, Y.; Sakai, M.; Noyori, R. Chem. Lett. 1975, 509.
- 117. Sato, T.; Watanabe, M.; Noyori, R. Heterocycles 1980, 14, 761.
- 118. LaBelle, B. E.; Knudsen, M. J.; Olmstead, M. M.; Hope, H.; Yanuck, M. D.; Schore, N. E. J. Org. Chem. 1985, **50**, 5215.
- 119. Lautens, M.; Kumanovic, S. J. Am. Chem. Soc. 1995, 117, 1954.
- 120. Sato, T.; Watanabe, M.; Noyori, R. Chem. Lett. 1978, 1297.
- 121. Cummins, W. J.; Drew, M. G. B.; Mann, J.; Markson, A. J. Tetrahedron 1988, **44**, 5151.
- 122. Barbosa, L.-C. deA.; Mann, J. J. Chem. Soc., Perkin Trans. 1 1992, 337.
- 123. Yadav, J. S.; Rao, C. S.; Chandrasekhar, S.; Rama Rao, A. V. Tetrahedron Lett. 1995 **36**, 7717.
- 124. Rama Rao, A. V.; Yadav, J. S.; Vidyasagar, V. J. Chem. Soc., Chem. Commun. 1985, 55.
- 125. Lautens, M.; Chiu, P.; Ma, S.; Rovis, T. J. Am. Chem. Soc. 1995, **117**, 532.
- 126. Kato, K.; Oda, M.; Kuroda, S.; Morita, N.; Asao, T. Chem. Lett. 1979, 43.
- 127. Köver, A.; Hoffmann, H. M. R. Tetrahedron 1988, 44, 6831.
- 128. Mann, J.; Holland, H. J. Tetrahedron 1987, 43, 2533.
- 129. Dirlam, J. P.; Eberson, L.; Casanova, J. J. Am. Chem. Soc. 1972, **94**, 240.
- 130. Barbee, T. R.; Albizati, K. F. J. Org. Chem. 1991, 56, 6764.
- 131. Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem.

1982, **47** 876.

- 132. Mann, J.; Overton, H. J.; Lewis, T. Tetrahedron Lett. 1985, 26, 6133.
- 133. Stohrer, I.; Hoffmann, H. M. R. Tetrahedron 1992, **48**, 6021.
- 134. Essert, U.; Stohrer, I.; Hoffmann, H. M. R. Tetrahedron Lett. 1992, **33**, 3465.
- 135. Vinter, J. G.; Hoffmann, H. M. R. J. Am. Chem. Soc. 1974, 96, 5466.
- 136. Hayakawa, Y.; Takaya, H.; Makino, S.; Hayakawa, N.; Noyori, R. Bull. Chem. Soc., Jpn. 1977, **50**, 1990.
- 137. Vinter, J. G.; Hoffmann, H. M. R. J. Am. Chem. Soc. 1973, 95, 3051.
- 138. Noyori, R.; Hayakawa, Y.; Funakura, M.; Takaya, H.; Murai, S.; Kobayashi, R.; Tsutsumi, S. J. Am. Chem. Soc. 1972, 94, 7202.
- 139. Noyori, R.; Hayakawa, Y.; Takaya, H.; Murai, S.; Kobayashi, R.; Sonoda, N. J. Am. Chem. Soc. 1978, **100**, 1759.
- 140. Posner, G. H.; Whitten, C. E.; Sterling, J. S. J. Am. Chem. Soc. 1973, 95, 7788.
- 141. Hoffmann, H. M. R.; Karama, U. Chem. Ber. 1992, **125**, 2803.
- 142. Sarhan, A. E. A. O.; Hoffmann, H. M. R. Chem. Ber. 1994, 127, 1755.
- 143. Karama, U.; Hoffmann, H. M. R. Chem. Ber. 1992, 125, 2809.
- 144. Sasaki, T.; Ishibashi, Y.; Ohno, M. Tetrahedron Lett. 1982, 23, 1693.
- 145. Hoffmann, H. M. R.; Kernaghan, G. F. P.; Greenwood, G. J. Chem. Soc., B 1971, 2257.
- 146. Blackburn, C.; Childs, R. F.; Kennedy, R. A. Can. J. Chem. 1983, **61**, 1981.
- 147. Shimizu, N.; Tsuno, Y. Chem. Lett. 1979, 103.
- 148. Huisgen, R.; Langhols, E.; Nöth, H. J. Org. Chem. 1990, 55, 1412.
- 149. Mayr, H.; Halberstadt-Kausch, I. K. Chem. Ber. 1982, 115, 3479.
- 150. Mayr, H.; Grubmüller, B. Angew. Chem., Int. Ed. Engl. 1978, 17, 130.
- 151. Hoffmann, H. M. R.; Joy, D. R. J. Chem. Soc. B. 1968, 1182.
- 152. Murray, D. H.; Albizati, K. F.; Tetrahedron Lett. 1990, 31, 4109.
- 153. Ohno, M.; Mori, K.; Hattori, T.; Eguchi, S. J. Org. Chem. 1990, 55, 6086.
- 154. Hoffmann, H. M. R.; Hill, A. E. Angew. Chem., Int. Ed. Engl. 1974, **13**, 136.
- 155. Schneider, M. P.; Csacsko, B. J. Chem. Soc., Chem. Commun. 1978, 964.
- 156. Hoffmann, H. M. R.; Matthei, J. Chem. Ber. 1980, 113, 3837.
- 157. Hoffmann, H. M. R.; Giesel, K.; Lies, R.; Ismail, Z. M. Synthesis 1986, 548.
- 158. Mayr, H.; Halberstadt, I. K. Angew. Chem., Int. Ed. Engl. 1980, 19, 814.
- 159. Hoffmann, H. M. R.; Vathke-Ernst, H. Chem. Ber. 1981, **114**, 2898.

- 160. Ernst, B.; Ganter, C. Helv. Chim. Acta 1978, 61, 1775.
- 161. Lee, J.; Oh, J.; Jin, S.; Choi, J.-R.; Atwood, J. L.; Cha, J. K. J. Org. Chem. 1994, **59**, 6955.
- 162. Oh, J.; Choi, J.-R.; Cha, J. K. J. Org. Chem. 1992, 57, 6664.
- 162a. Oh, J.; Lee, J.; Jin, S.; Cha, J. K. Tetrahedron Lett. 1994, 35, 3449.
- 163. Oh, J.; Cha, J. K. Synlett 1994, 967.
- 164. Wilson, S. R.; Sawicki, R. A.; Huffmann, J. C. J. Org. Chem. 1981, **46**, 3887.
- 165. Barbosa, L. C. A.; Mann, J. Synthesis 1996, 31.
- 166. Landor, S. R.; Rogers, V.; Sood, H. R. Tetrahedron 1977, 33, 73.
- 167. Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1972, 11, 324.
- 168. Föhlisch, B.; Gottstein, W. J. Chem. Res. (S) 1981, 94.
- 169. De Kimpe, N.; Palamareva, M.; Verhe, R.; De Buyck, L.; Schamp, N. J. Chem. Res. (S) 1986, 190.
- 170. Kim, H.; Ziani-Cherif, C.; Oh, J.; Cha, J. K. J. Org. Chem. 1995, 60, 792.
- 171. Prokesova, M.; Solcaniova, E.; Toma, S.; Muir, K. W.; Torabi, A. A.; Knox, G. R. J. Org. Chem. 1996, **61**, 3392.
- 172. Föhlisch, B.; Joachini, R. Chem. Ber. 1987, 120, 1951.
- 172a. Föhlisch, B.; Herter, R.; Wolf, E. J. Chem. Res. (S) 1986, 128.
- 172b. Föhlisch, B.; Krimmer, D.; Gehrlach, E.; Käshammer, D. Chem. Ber. 1988, **121**, 1585.
- 173. Föhlisch, B.; Herrscher, I. Chem. Ber. 1986, 119, 524.
- 174. Föhlisch, B.; Joachimi, R.; Reiner, S. J. Chem. Res. (S) 1993, 253.
- 175. Walters, M. A.; Arcand, H. R.; Lawrie, D. J. Tetrahedron Lett. 1995, **36**, 23.
- 176. Bowers, K. G.; Mann, J.; Markson, A. J. J. Chem. Res. (S) 1986, 424.
- 177. Bowers, K. G.; Mann, J.; Walsh, E. B.; Howarth, O. W. J. Chem. Soc., Perkin Trans. 1 1987, 1657.
- 178. Föhlisch, B.; Gehrlach, E.; Henlo, G.; Boberlin, U.; Herter, R. J. Chem. Res. (S) 1991, 136.
- 179. Matzinger, P.; Eugster, C. H. Helv. Chim. Acta 1979, 62, 2325.
- 180. Mann, J.; Wilde, P. D.; Finch, M. W. Tetrahedron 1987, 43, 5431.
- 181. Fort, A. W. J. Am. Chem. Soc. 1962, 84, 4979.
- 182. Hirano, T.; Kumagai, T.; Miyashi, T.; Akiyama, K.; Ikegami, Y. J. Org. Chem. 1991, **56**, 1907.
- 183. Samuel, C. J. J. Chem. Soc., Chem. Commun. 1979, 275.
- 184. Samuel, C. J. J. Chem. Soc., Perkin Trans. 2, 1981, 736.
- 185. Richey, H. G.; Richey, J. M.; Clagett, D. C. J. Am. Chem. Soc. 1964, **86**, 3906.

- 186. Cookson, R. C.; Nye, M. J.; Subrahmanyam, G. Proc. Chem. Soc. 1964, 144.
- 187. Chapman, O. L.; Clardy, J. C.; McDowell, T. C.; Wright, H. E. J. Am. Chem. Soc. 1973, **95**, 5086.
- 188. Hirano, T.; Kumagai, T.; Miyashi, T.; Akiyama, K.; Ikegami, Y. J. Org. Chem. 1992, **57**, 876.
- 189. Schultz, A. G.; Reilly, J. J. Am. Chem. Soc. 1992, 114, 5068.
- 190. Barber, L. L.; Chapman, O. L.; Lassila, J. D. J. Am. Chem. Soc. 1969, **91**, 3664.
- 191. Föhlisch, B.; Herter, R. Chem. Ber. 1984, **117**, 2580.
- 192. Noyori, R.; Nishizawa, M.; Shimizu, F.; Hayakawa, Y.; Maruoka, K.; Hashimoto, S.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1979, **101**, 220.
- 193. Kaiser, R.; Föhlisch, B. Helv. Chim. Acta 1990, 73, 1504.
- 194. Schultz, A. G.; Myong, S. O.; Puig, S. Tetrahedron Lett. 1984, 25, 1011.
- 195. Schultz, A. G.; Macielag, M.; Plummer, M. J. Org. Chem. 1988, 53, 391.
- 196. Giguere, R. J.; Tassely, S. M.; Rose, M. I.; Krishnamurthy, V. V. Tetrahedron Lett. 1990, **31**, 4577.
- 197. Harmata, M.; Elahmad, S. Tetrahedron Lett. 1993, 34, 789.
- 198. Harmata, M.; Herron, B. F. Tetrahedron Lett. 1993, 34, 5381.
- 199. Harmata, M.; Herron, B. F. J. Org. Chem. 1993, 58, 7393.
- 200. Hoffmann, H. M. R.; Henning, R.; Lalko, O. R. Angew Chem., Intl. Ed. Engl. 1982, **21**, 442.
- 201. Hoffmann, H. M. R.; Henning, R. Helv. Chim. Acta 1983, 66, 828.
- 202. Harmata, M.; Gamlath, C. B.; Barnes, C. L.; Jones, D. E. J. Org. Chem. 1995, **60** 5077.
- 203. Harmata, M.; Gamlath, C. B.; Barnes, C. L. Tetrahedron Lett. 1990, **31**, 5981.
- 203a. Harmata, M.; Gamlath, C. B.; Barnes, C. L. Tetrahedron Lett. 1993, **34**, 265.
- 204. Harmata, M.; Jones, D. E. Tetrahedron Lett. 1996, 37, 783.
- 205. Harmata, M.; Fletcher, V. R.; Claassen, R. J. J. Am. Chem. Soc. 1991, **113**, 9861.
- 206. Binger, P.; Büch, H. M. Top. Curr. Chem. 1987, 135, 77.
- 207. Day, A. C.; Powell, J. T. J. Chem. Soc., Chem. Commun. 1968, 1241.
- 208. Trost, B. M.; Nanninga, T. N.; Chan, D. M. T. Organometallics 1982, 1, 1543.
- 209. Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1983, **105**, 2315.
- 210. Trost, B. M.; Schneider, S. Angew Chem., Intl. Ed. Engl. 1989, 28, 213.

- 211. Trost, B. M.; MacPherson, D. T. J. Am. Chem. Soc. 1987, 109, 3483.
- 212. Trost, B. M.; Yamazaki, S. Chem. Lett. 1994, 2245.
- 213. Trost, B. M.; Marrs, C. M. J. Am. Chem. Soc. 1993, 115, 6636.
- 214. Trost, B. M.; Matelich, M. C. J. Am. Chem. Soc. 1991, 113, 9007.
- 215. Mok, K.-L.; Nye, M. J. J. Chem. Soc., Chem. Commun. 1974, 608.
- 216. Hautke, K.; Gotthardt, H. J. Chem. Soc., Chem. Commun. 1984, 1682.
- 217. Baran, J.; Mayr, H. J. Am. Chem. Soc. 1987, 109, 6519.
- 218. Baran, J.; Mayr, H. J. Org. Chem. 1989, 54, 5774.
- 219. Mayr, H.; Heigl, U. W.; Baran, J. Chem. Ber. 1993, **126**, 1913.
- 220. Levisalles, J.; Rose, E.; Tkatchenko, I. J. Chem. Soc., Chem. Commun. 1969, 445.